How can I prove that:(adsbygoogle = window.adsbygoogle || []).push({});

If a formula [tex]A[/tex] is provable without use of substitution axioms, nonlogical axioms, equality and identity axioms, and the [tex]\exists[/tex]-introduction rule, than [tex]A[/tex] is a tautology.

I try to act this way: consider a tautology A and show that using propositional axioms I get another tautology, and that if the hypothesis of a rule are tautologies then also the conclusion is a tautology. But I don't know wether it is the correct way or not.

Anyone can help me?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A formula provable without is a tautology

**Physics Forums | Science Articles, Homework Help, Discussion**