Let ρ(x) be a continuous function on ℝ, which evaluates ρ(x)=0 when |x|≥1 and that meets following.(adsbygoogle = window.adsbygoogle || []).push({});

∫[-1,1]ρ(x)dx=1

And let ψ(x) be a continuous function on interval [-1,1], prove

lim[n→∞] n∫[-1,1]ρ(nx)ψ(x)dx = ψ(0).

is denoted.

This is NOT a homework but a past exam problem of a college that has no answer.

I've been thinking for a whole day now.

What I have found so far:

First I defined sequencing functions as following:

F_n(x)=∫[-1,x]ρ(ny)ψ(y)dy

G_n(x)=∫[x,1]ρ(ny)ψ(y)dy

Now given a properly large natural number of n_0 which completes n_0≥1/y (where y≠0),

for all n∈N of n≥n_0, ρ(ny) evaluates 0. In this sense, taken a small positive number ε>0 instead of y, we only have to concern that of a small closed interval of [-ε,ε] as to nF_n(-ε) and nG_n(ε) gives 0 (for all n≥n_0≥1/ε).

So for all n same above,

n∫[-1,1]ρ(nx)ψ(x)dx = n∫[-ε,ε]ρ(nx)ψ(x)dx

And I have a stuck.

Please help ;)

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A limit of an indexed integral at closed interval

**Physics Forums | Science Articles, Homework Help, Discussion**