karush said:
write a linear equation in 3 variables that is satisfied by all 3 of the given ordered triples
$(1,1,1), (0,2,0), (1,0,0)$
the examples in book are all on the $ax+by+cz=d$ equation but with just ordered triples there is no $d$ or can it be found from them... otherwise I would solve this by simultaneously.
the answer to this is $2x+y-z=2$
There will be a unique plane which satisfies these three points simultaneously. The plane will have the same coefficients as its normal vector, and the normal vector will also be normal to any vectors in the plane. So if we can get two vectors that lie in the plane, taking their cross product will give the normal vector. Call two of these vectors \displaystyle \begin{align*} \mathbf{a} \end{align*} and \displaystyle \begin{align*} \mathbf{b} \end{align*}. We could have
\displaystyle \begin{align*} \mathbf{a} &= ( 1 - 0, 1 - 2, 1 - 0) \\ &= ( 1 , -1, 1 ) \\ \\ \mathbf{b} &= (1 - 0, 0 - 2, 0 - 0 ) \\ &= ( 1 , -2, 0) \end{align*}
\displaystyle \begin{align*} \mathbf{n} &= \mathbf{a} \times \mathbf{b} \\ &= \left| \begin{matrix} \mathbf{i} & \phantom{-}\mathbf{j} & \mathbf{k} \\ 1 & -1 & 1 \\ 1 & -2 & 0 \end{matrix} \right| \\ &= \mathbf{i} \, \left| \begin{matrix} -1 & 1 \\ -2 & 0 \end{matrix} \right| - \mathbf{j} \, \left| \begin{matrix} 1 & 1 \\ 1 & 0 \end{matrix} \right| + \mathbf{k} \, \left| \begin{matrix} 1 & -1 \\ 1 & -2 \end{matrix} \right| \\ &= \mathbf{i} \, \left[ -1 \cdot 0 - 1 \cdot (-2) \right] - \mathbf{j} \, \left( 1 \cdot 0 - 1 \cdot 1 \right) + \mathbf{k} \, \left[ 1 \cdot (-2) - (-1) \cdot 1 \right] \\ &= 2\,\mathbf{i} + \mathbf{j} - \mathbf{k} \end{align*}
The plane will have the same coefficients as the normal vector, so that gives \displaystyle \begin{align*} 2x + y - z = d \end{align*}. Since we have three points that lie on the plane, any of them can be substituted to find \displaystyle \begin{align*} d \end{align*}. If we substitute \displaystyle \begin{align*} (1, 0, 0) \end{align*} that gives
\displaystyle \begin{align*} 2 \cdot 1 + 0 - 0 &= d \\ 2 &= d \end{align*}
and thus the plane is \displaystyle \begin{align*} 2x + y - z = 2 \end{align*}.