Alamino
- 69
- 0
If we have
P(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2} x^2},
then
I=\int^{+\infty}_{-\infty}dx \, P(x) \theta(x)<br /> = \int^{+\infty}_0 dx \, P(x)=\frac{1}{2},
where \theta is the step function. Now, using its integral representation, we have
<br /> I=\int^{+\infty}_{-\infty}dx \, P(x) \frac{1}{2\pi i} \int^{+\infty}_{-\infty} \frac{dk}{k} \, e^{ikx} = \frac{1}{2\pi i} \int^{+\infty}_{-\infty} \frac{dk}{k} \int^{+\infty}_{-\infty}dx \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2+ikx}= \frac{1}{2\pi i}\int^{+\infty}_{-\infty} \frac{dk}{k} e^{-\frac{1}{2} k^2} .<br />
But the integral over k is calculated using residues and gives 2\pi i times the residue at k=0, what gives simply 2\pi i for the integral over k and the wrong result 1 for the integral I. I cannot see the catching. What is wrong with this calculation?
P(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2} x^2},
then
I=\int^{+\infty}_{-\infty}dx \, P(x) \theta(x)<br /> = \int^{+\infty}_0 dx \, P(x)=\frac{1}{2},
where \theta is the step function. Now, using its integral representation, we have
<br /> I=\int^{+\infty}_{-\infty}dx \, P(x) \frac{1}{2\pi i} \int^{+\infty}_{-\infty} \frac{dk}{k} \, e^{ikx} = \frac{1}{2\pi i} \int^{+\infty}_{-\infty} \frac{dk}{k} \int^{+\infty}_{-\infty}dx \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2+ikx}= \frac{1}{2\pi i}\int^{+\infty}_{-\infty} \frac{dk}{k} e^{-\frac{1}{2} k^2} .<br />
But the integral over k is calculated using residues and gives 2\pi i times the residue at k=0, what gives simply 2\pi i for the integral over k and the wrong result 1 for the integral I. I cannot see the catching. What is wrong with this calculation?