A method for proving something about all sets in ZFC

phoenixthoth
Messages
1,600
Reaction score
2
I would appreciate any and all feedback regarding this document currently housed in Google docs. Basically, I generalize induction among natural numbers to an extreme in an environment regarding what I call grammatical systems. Then an induction principle is derived from that which holds in ZFC set theory (and perhaps other set theories) which would enable someone to prove statements about all sets in ZFC.

https://docs.google.com/document/d/1amDb4Yti4egpKfcO2oLcnGAH8UpC8_tKb7ivuH3AT7A/edit?usp=sharing
 
Physics news on Phys.org
So what kind of feedback do you want? Everything in the document is rather well-known, it's only phrased in terms that are pretty weird. There are some inaccurate things in the document though, so perhaps you want to discuss that?
 
In particular, take a look at section 1.2 of Hinman's "Fundamentals of logic". You should be more careful in your document however since you only define "grammatical systems" for sets, while you later use them for classes when dealing with ZF.
 
micromass said:
So what kind of feedback do you want? Everything in the document is rather well-known, it's only phrased in terms that are pretty weird. There are some inaccurate things in the document though, so perhaps you want to discuss that?
That in itself is very useful feedback. Thank you. I guess I haven't studied enough set theory because I haven't seen this result before. I'm glad I don't have to reinvent the wheel. I will see if I can find Hinman. We might as well discuss those innacurate things. I don't know if changing the terms I use from sets to classes when defining grammatical systems would harm anything. I was also thinking, alternatively, that maybe I should note that I must not be working within ZFC in order to prove something about ZFC; I apparently need something else like NFU or something that isn't ZFC. I'm excited to go find out other presentations of this result which I was suspecting was well-known, in part to see if more or less machinery is required in other presentations.
 
Are there any references online that explain this result differently from how I did it (or almost did it) as I cannot find Hinman's book online?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top