Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: A proof with sums

  1. Mar 25, 2010 #1
    1. The problem statement, all variables and given/known data
    Let {a_n} be an alternating series of real numbers approaching zero. Prove there exist a z0 on the unit circle such that the power series [tex]\sum_{}^{} a_{n}z^{n} [/tex] is uniformly convergent on the domain of z such that both |z|<=1 and |z-z0|>= delta, where delta>0

    2. Relevant equations

    no idea, especially the thing about "Prove that such a z0 exist": No idea what I can do with that..

    3. The attempt at a solution
    For those who have Serge Langs complex analysis: See page 454 appendix I, propostion 1.2b, which was given as a hint, but I don't have a clue from where I can show such a z0 exist ..?
    I thought that perhaps you can do it by contradiction: But what would be the negation..?
    Sorry, but I am very confused, help, anyone?
     
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted