A question of fully invariant subgroup

rulin
Messages
7
Reaction score
0
A subgroup H of a group G is fully invariant if t(H)<=H for every endomorphism t of G. Let G is finite p-group has a fully invariant subgroup of order d for every d dividing |G|. What is the structure of G ?
 
Physics news on Phys.org
Welcome to PF!

rulin said:
A subgroup H of a group G is fully invariant if t(H)<=H for every endomorphism t of G. Let G is finite p-group has a fully invariant subgroup of order d for every d dividing |G|. What is the structure of G ?

Hi rulin ! Welcome to PF! :smile:

Hint: if p and q are different prime factors of |G|, and their fully invariant subgroups are P and Q, then what is the order of the subgroup generated by P and Q? :wink:
 
Maybe i don't know the order of the subgroup generated by P and Q, but this group satisfied above condition must be nilpotent.
 
Well that doesn't say much, because any finite p-group is nilpotent.

To be honest, I don't understand the relevance of tiny-tim's hint.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top