PeterDonis
Mentor
- 49,621
- 25,740
Nugatory said:The tension at that point is zero, so the only force acting on the tip of the rope is gravitational.
No. The language that it's natural to use here makes it hard to see what's actually going on, so let me first state it in terms of ##a_{tension}##, the proper acceleration due to the gradient in the tension in the rope; ##a_{tension}## is certainly *not* zero at the bottom end of the rope, in fact it's at its maximum value (that's obvious from the formula I gave for it). That means there must be a nonzero force in addition to "gravitational" force (which, as I pointed out previously, really means "gravity" plus "centrifugal" force if we are working in the rotating frame, as I was) on the rope even at its bottom tip; there has to be, because there is nonzero proper acceleration there, and "gravitational" forces produce zero proper acceleration.
In other words, the tension in the rope is zero at the mathematical point at the very bottom tip of the rope; but there is a positive gradient in the tension there, which is larger than anywhere else in the rope, so the piece of rope just above the bottom tip has nonzero tension, and therefore exerts nonzero force on the piece of rope right at the bottom tip. That's why ##a_{tension}## is nonzero (and maximum) at the bottom end of the rope even though the tension itself goes to zero there.
[Edit: Went back and corrected the formulas to include the effect of the Moon's mass.]