RoNN|3
- 8
- 0
Assume:
p>1, x>0, y>0
a \geq 1 \geq b > 0
\frac{a^2}{p^2}+(1-\frac{1}{p^2})b^2 \leq 1
\frac{x^2}{a^2}+\frac{y^2}{b^2} \leq 1
Prove:
\frac{x}{p}+y\sqrt{1-\frac{1}{p^2}} \leq 1
I've been trying for 3 days and it's driving me crazy. Any ideas?
p>1, x>0, y>0
a \geq 1 \geq b > 0
\frac{a^2}{p^2}+(1-\frac{1}{p^2})b^2 \leq 1
\frac{x^2}{a^2}+\frac{y^2}{b^2} \leq 1
Prove:
\frac{x}{p}+y\sqrt{1-\frac{1}{p^2}} \leq 1
I've been trying for 3 days and it's driving me crazy. Any ideas?