AxiomOfChoice
- 531
- 1
Can someone give an example of one? I can't think of one...
Landau said:Let X={a,b} (a and b distinct). Define the relation R on X by R={(a,a)}. Then R is symmetric and transitive, but not reflexive on X since (b,b) is not in R.
The point is that reflexivity involves a set ("reflexive on X": FOR ALL x in X we must have (x,x) in R), but symmetry and transivity are defined by means of an implication (IF ... is in R, THEN ... is in R).