Let [itex]p[/itex] be a prime. Let [itex]H_{i}[/itex], [itex]i=1,...,n[/itex] be normal subgroups of a finite group [itex]G[/itex]. I want to prove the following:(adsbygoogle = window.adsbygoogle || []).push({});

If [itex]G/H_{i}[/itex], [itex]i=1,...,n[/itex] are abelian groups of exponent dividing [itex]p-1[/itex], then [itex]G/N[/itex] is abelian group of exponent dividing [itex]p-1[/itex] where [itex]N=\bigcap H_{i} ,i=1,...,n[/itex].

Proof:

Since [itex]G/H_{i}[/itex], [itex]i=1,...,n[/itex] are abelian groups, then [itex]G^{'}[/itex] (the derived subgroup of [itex]G[/itex]) is contained in every [itex]H_{i}[/itex], [itex]i=1,...,n[/itex]. Hence [itex]G^{'}[/itex] is contained in [itex]N[/itex]. Therefore [itex]G/N[/itex] is abelian. I do not know how to deal with the exponent.

Thanks in advance.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Abelian groups and exponent of a group

Loading...

Similar Threads - Abelian groups exponent | Date |
---|---|

I Group theory in physics | Mar 27, 2017 |

I Free Abelian Groups ... Aluffi Proposition 5.6 | May 13, 2016 |

Abelianization of Lie groups | Feb 11, 2016 |

Finding non-trivial automorphisms of large Abelian groups | May 30, 2015 |

**Physics Forums - The Fusion of Science and Community**