The first trial is with the man standing and letting his arms hang straight down, so his fingertips point at the ground (like
this). You apply the force F tangentially to the fingertips on, say, his right hand and raise it in a smooth arc until it is
horizontal, so you have raised it 90˚.
I cannot find an image online for the arm position in the second trial, but think of touching your right shoulder with your right hand while keeping the elbow pointing down. That pretty much halves the length of the arm but keeps the mass the same. Now the force is applied tangentially to the elbow to raise it until horizontal.
As I think you understand, in the first trial the lever arm is greater and (since torque is lever arm times perpendicular force), the torque
applied to the arm is greater than in the second trial. Focus on toque as something that causes a rotational acceleration (just as a translational force acting on the center of mass of a body makes it accelerate translationally).
As you also see, the lever arm of the folded arm is shorter, so the moment of inertia is smaller. (Treating the arm as a cylinder rotating about its end
I=MR
2/3.) Halving the R (so substituting R/2 and then squaring). the moment of inertia is one quarter as great.
Focus on moment of inertia as a resistance to a change in rotation, or as a resistance to the effects of a torque. Halving the arm length increases the torque acting on the arm and decreases the resistance of the arm to the torque's effects, so the rotational acceleration is greater.
Finally, both arms start at rest and swing through the same angle. The shorter arm "speeds up" more rapidly. so it reaches the horizontal position more quickly.
Does that help?