Explanation of Diagram:
Q' is a representation of a 3D vector, vector Q, after a rotation of δθ about an axis, that axis being represented by vector n hat in the diagram. The angle between vector Q and vector n hat is represented as α.
Explanation of the very first step:
During the rotation depicted in the diagram, the arc traced by the head of the vector is a partial circle.
The partial circle has a center on the path of vector n hat, and a radius perpendicular to the path of vector n hat. therefore, the arc length traced by the rotation can be represented by the arc length formula for a circle in radians, s = rθ.
The equation in the very first step is based on two assertions. The first assertion is that when δθ is very small, the arc length can be represented as a vector, vector s, whose magnitude = rθ (from the arc length formula for a circle), and whose direction is in the direction of n hat cross Q. That vector is represented by the second part of the RHS of the very first equation, (|Q|sinα)δθ(in direction of n hat cross Q), where (|Q|sinα)δθ is the magnitude and corresponds to rθ in that |Q|sinα = the radius of the partial circle (r), and δθ = the angle displacement from Q to Q' (θ). The second assertion is that vector Q' can be represented as the vector sum of vector Q and vector s. However, given the stipulation of δθ being very small, this representation of Q' is regarded as an approximation.