Does a particle at max speed have zero acceleration?

jaejoon89
Messages
187
Reaction score
0

Homework Statement



Show that this statement is false: when a moving particle along a curve reaches its max. speed at t=3, its acceleration is 0.

Homework Equations



a = d^2 R / dt^2 = d|v|/dt * T + k |v|^2 N

where k = |dT/ds|, T = v/|v|, N = 1/k dT/ds

The Attempt at a Solution



|v| is max at t = 3 so it is nonzero so the second term in acceleration should be nonzero and hence a nonzero total acceleration will result. I think the first term could, however, be 0 since the derivative of the speed will be 0 at this point. Is this correct? Is there a proper way to show this?
 
Physics news on Phys.org
Sure. N could be a nonzero vector. So even if the tangential acceleration is zero it could have a normal component. The problem only asks you to show that it's false. All you need is a counterexample. Almost anything would work. Like circular motion at a nonuniform velocity.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top