Korgeghi said:
it is not possible to get it to the speed of light because the energy requirement to accelerate the spaceship/particle gets exponentially larger as the speed of light is approached, and tends to infinity at the speed of light.
While what you say about energy is true, it is not the fundamental reason that you can't accelerate a body to c, and thinking this way (that the inability to get to c has something to do with energy) really prevents you from appreciating the root character of Relativity, which is geometry.
The reason bodies cannot accelerate to c is not dynamic. It's not about energy. The reason massive bodies cannot reach c in essence is very simple: c is an invariant speed. Suppose someone shines a light beam past you, and you start running towards it in an attempt to catch up with it. No matter how fast you run, not only can you never catch up with the light ray, you never make even the least amount of headway. No matter how fast you run, the light beam continues to recede from you at c. Running at 0.99c (relative to the road) is exactly as far from the speed of light as being at rest. If you are slower than the light ray in your frame, you are slower than the light ray in every frame. Thus you can never reach c in any frame. No mention of energy is required to derive this, so it must not be an energy issue.
At slow speeds, it's easy to talk about the body's "velocity." An observer on the side of the road can (1) time how long it takes the rocket to get from one mile post to the next. (2) Or the rocket pilot can time how long it takes to get from one mile post to the next. (3) Or the roadside observer can observe the time between when the front of the rocket (of pre-measured rest length) reaches a milepost and when the back of it gets there. (4) Or the rocket pilot can integrate his acceleration with respect to time. In Newtonian physics, all these definitions of velocity are the same and it doesn't matter which one you use. But in Relativity, they are not. We call definition (1) the "coordinate velocity." This is the velocity that we say cannot reach c. But definitions (2) and (3) are equivalent and called the "celerity," and these increase without bound. Definition (4) is called the "rapidity" and also increases without bound.
So really, the reason a body can't reach c is that when getting close to c, we use a dumb definition of "velocity" to describe it. It turns out that acceleration is change in rapidity with time, NOT the change of velocity. At low speeds, this makes no difference (because the velocity, celerity, and rapidity are all the same), but at nearly c, it makes all the difference. As Jesse says, you cannot add velocities together. So since total velocity is not v+dv, then acceleration cannot be dv/dt. It's only rapidities that add properly. As the rocket accelerates, the rapidity of the rocket happily increases uniformly, at the same time as the velocity slows down its rate of increase, never reaching c.
So as the rocket accelerates, it can maintain the same feeling of acceleration indefinitely, as its rapidity increases without bound. So the rocket pilot always feels the same acceleration. His change of velocity slows down, so you might think he feels less acceleration, but proper acceleration is change of rapidity, not change of velocity.
What the pilot "sees" depends on your definition of "sees." But the easiest thing for the pilot to "see" is his celerity. If he times the mileposts as they pass by, they pass faster and faster and faster as he accelerates, without any limit. Although no single milepost has a coordinate velocity of more than c, the distances between them length-contract. To the rocket pilot, the distance between them gets very short, and is no longer a mile. In other words, as the rocket accelerates, the mileposts at first simply appear to travel faster and faster, but as they approach coordinate velocity c, they length-contract together instead of getting faster. As a result, he can pass mileposts at an arbitrarily rapid rate, even though their velocity is never more than c.