Thanks for all your answers; now I think I can pin down the motivation behind the question. Each irrational surd seems (if I'm not mistaken) to generate an ideal on R. When I google about this (not that I know shrlit), there is something called 'Dedekind domains', on which ideals can be uniquely expressed as a product of 'prime' factors.
So this collection of ideals (plus some 'nice' additions, like 0 and 1) begins to behave, it seems to me, like the ring of integers (note to myself: prove it is a ring). Now, one of the holy grails is to understand the relation between prime factors and addition (given the prime factorization of two integers, what is the prime factorization of their sum? - heavy open problem). And while there are plenty of examples of sums of integers to toy with, I can't find a single example of a sum of 'surd ideals'. Annoying, to say the least.
P.S.: Oh well, neither multiplication is an internal law, nor there are additive inverses. Bummer. It's still annoying.
P.P.S.: What am I saying, even addition is not internal; \sqrt 2 + \sqrt 3, if irrational at all, is not a surd, for the reasons in post#7.
Just let it go. I was just wandering about.