MHB Additional solution for polar form of complex number

AI Thread Summary
The discussion revolves around finding a second solution for the polar form of a complex number, initially calculated as sqrt(2)(cos(75)+i(sin(75)). It is noted that due to the periodic nature of complex numbers, multiple representations exist, expressed as sqrt(2)(cos(75 + 360x) + i(sin(75 + 360x)), where x is an integer. The conversation highlights the importance of using radian measure and explores the calculation of the argument and modulus for a specific complex number in the second quadrant. The final solutions are derived using the square root of the complex number, resulting in two distinct values for z. The thread emphasizes the significance of understanding the periodicity in complex number solutions.
TheFallen018
Messages
52
Reaction score
0
Hi, I had a question I was working on a while back, and whilst I got the correct answer for it, I was told that there was a second solution to it that I missed.

Here is the question.
View attachment 7622]

I worked my answer out to be sqrt(2)(cos(75)+i(sin(75))), however, it appears there is a second solution. From what I have gathered, it has to do with the fact that so long as the point remains in the same location of the graph, the solution is still equal. Therefore, it can crudely be expressed as sqrt(2)(cos(75(360x))+i(sin(75(360x)))), where x is an integer. However, that's still not the solution I'm looking for.

If anyone would be able to help clear this up, I would be most grateful.
 

Attachments

  • Math3.jpg
    Math3.jpg
    7.4 KB · Views: 97
Mathematics news on Phys.org
TheFallen018 said:
Hi, I had a question I was working on a while back, and whilst I got the correct answer for it, I was told that there was a second solution to it that I missed.

Here is the question.
]

I worked my answer out to be sqrt(2)(cos(75)+i(sin(75))), however, it appears there is a second solution. From what I have gathered, it has to do with the fact that so long as the point remains in the same location of the graph, the solution is still equal. Therefore, it can crudely be expressed as sqrt(2)(cos(75(360x))+i(sin(75(360x)))), where x is an integer. However, that's still not the solution I'm looking for.

If anyone would be able to help clear this up, I would be most grateful.

You're doing complex numbers, by now you should be using radian measure.

$\displaystyle \begin{align*} z_4 &= -\sqrt{3} + \mathrm{i} \end{align*}$

This is in the second quadrant. $\displaystyle \begin{align*} \left| z_4 \right| = \sqrt{\left( \sqrt{3} \right) ^2 + 1^2} = \sqrt{4} = 2 \end{align*}$ and $\displaystyle \begin{align*} \textrm{Arg}\,\left( z_4 \right) = \pi - \arctan{ \left( \frac{1}{\sqrt{3}} \right) } = \pi - \frac{\pi}{6} = \frac{5\,\pi}{6} \end{align*}$. But every rotation of $\displaystyle \begin{align*} 2\,\pi \end{align*}$ units ends up back at the same point, so we can write

$\displaystyle \begin{align*} z_4 &= 2\,\mathrm{e}^{ \left( \frac{5\,\pi}{6} + 2\,\pi\,n \right) \, \mathrm{i} } \textrm{ where } n \in \mathbf{Z} \end{align*}$

Now when we solve $\displaystyle \begin{align*} z^2 = z_4 \end{align*}$ we have

$\displaystyle \begin{align*} z^2 &= 2\,\mathrm{e}^{\left( \frac{5\,\pi}{6} + 2\,\pi\,n \right) \,\mathrm{i}} \\ z &= \left[ 2\,\mathrm{e}^{\left( \frac{5\,\pi}{6} + 2\,\pi\,n \right) \,\mathrm{i}} \right] ^{\frac{1}{2}} \\ z &= \sqrt{2}\,\mathrm{e}^{ \left( \frac{5\,\pi}{12} + \pi\,n \right) \,\mathrm{i} } \end{align*}$Since $\displaystyle \begin{align*} \textrm{Arg}\,\left( z \right) \in \left( -\pi, \pi \right] \end{align*}$ that means we have

$\displaystyle \begin{align*} z_1 &= \sqrt{2} \,\mathrm{e}^{\frac{5\,\pi}{12}\,\mathrm{i}} \\ &= \sqrt{2} \, \left[ \cos{ \left( \frac{5\,\pi}{12} \right) } + \mathrm{i} \sin{ \left( \frac{5\,\pi}{12} \right) } \right] \\ &= \sqrt{2} \,\left[ \cos{ \left( \frac{\pi}{6} + \frac{\pi}{4} \right) } + \mathrm{i} \sin{ \left( \frac{\pi}{6} + \frac{\pi}{4} \right) } \right] \\ &= \sqrt{2} \,\left\{ \cos{ \left( \frac{\pi}{6} \right) } \cos{ \left( \frac{\pi}{4} \right) } - \sin{ \left( \frac{\pi}{6} \right) } \sin{ \left( \frac{\pi}{4} \right) } + \mathrm{i}\,\left[ \sin{\left( \frac{\pi}{6} \right) } \cos{ \left( \frac{\pi}{4} \right) } + \cos{ \left( \frac{\pi}{6} \right) } \sin{ \left( \frac{\pi}{4} \right) } \right] \right\} \\ &= \sqrt{2}\,\left[ \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt{2}} + \mathrm{i} \,\left( \frac{1}{2} \cdot \frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} \right) \right] \\ &= \frac{\sqrt{3} - 1}{2} + \mathrm{i} \,\left( \frac{\sqrt{3} + 1}{2} \right) \end{align*}$

and

$\displaystyle \begin{align*} z_2 &= \sqrt{2}\,\mathrm{e}^{\left( \frac{5\,\pi}{12} - \pi \right) \,\mathrm{i}} \\ &= \sqrt{2}\,\mathrm{e}^{ -\frac{7\,\pi}{12}\,\mathrm{i} } \\ &= \sqrt{2}\,\left[ \cos{ \left( -\frac{7\,\pi}{12} \right) } + \mathrm{i}\sin{ \left( -\frac{7\,\pi}{12} \right) } \right] \\ &= \sqrt{2}\,\left[ \cos{ \left( -\frac{\pi}{4} - \frac{\pi}{3} \right) } + \mathrm{i}\sin{ \left( -\frac{\pi}{4} - \frac{\pi}{3} \right) } \right] \\ &= \sqrt{2}\,\left\{ \cos{ \left( -\frac{\pi}{4} \right) } \cos{ \left( \frac{\pi}{3} \right) } + \sin{ \left( -\frac{\pi}{4} \right) } \sin{ \left( \frac{\pi}{3} \right) } + \mathrm{i}\,\left[ \sin{\left( -\frac{\pi}{4} \right) } \cos{ \left( \frac{\pi}{3} \right) } - \cos{ \left( -\frac{\pi}{4} \right) } \sin{ \left( \frac{\pi}{3} \right) } \right] \right\} \\ &= \sqrt{2} \,\left[ \frac{1}{\sqrt{2}}\cdot \frac{1}{2} - \frac{1}{\sqrt{2}}\cdot \frac{\sqrt{3}}{2} + \mathrm{i}\,\left( -\frac{1}{\sqrt{2}} \cdot \frac{1}{2} - \frac{1}{\sqrt{2}}\cdot \frac{\sqrt{3}}{2} \right) \right] \\ &= \frac{1 - \sqrt{3}}{2} + \mathrm{i} \,\left( \frac{-1 - \sqrt{3}}{2} \right) \end{align*}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
15
Views
3K
Replies
10
Views
3K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
11
Views
3K
Replies
3
Views
1K
Replies
2
Views
3K
Back
Top