Solving x^2 dy/dx = y-xy with y(-1)=-1

  • Thread starter Thread starter Saladsamurai
  • Start date Start date
Saladsamurai
Messages
3,009
Reaction score
7

Homework Statement


Find implicit and explicit solution for

x^2\frac{dy}{dx}=y-xy when y(-1)=-1


So far I have:

\frac{(1-x)}{x^2}dx=dy/y

\Rightarrow x^{-2}(1-x)dx=\ln y+C

\Rightarrow (x^{-2)-x^{-1})dx=\ln y+C

\Rightarrow -\frac{1}{x}-\ln x=\ln y+C

With the initial values, (-1,-1) are outside of the domain. What gives? My integration looks good to me. What am I missing?

Thanks,
Casey
 
Physics news on Phys.org
Actually,

\int \frac{du}{u} = \ln |u| + C

Assuming everything else is correct, that might be your mistake.
 
Oh, yes, that looks like it would clear up the problem. Thanks Ben. The integration looked a little to easy to be getting the best of me. It's always the details...

Thanks,
Casey
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top