MHB Ahmed's Calculus Parallel Resistors Q: Rate of Change Help

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus Parallel Resistors Question Help?

Need some detailed help with the following problem please!

An electrical circuit consists of two parallel resistors, with resistances R1 and R2 respectively. The total resistance R of the circuit (measured in Ohms) is specified by (1/R = (1/R1) + (1/R2).

The resistors are heating up, so their resistances are increasing over time. Suppose that R1 is increasing at a rate of .3 Ohms/s and R2 is increasing at a rate of .2 ohms/s.

When R1 = 80 Ohms and R2 = 100 Ohms, how fast is the total resistance increasing?

Here is a link to the question:

Calculus Parallel Resistors Question Help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Ahmed,

We are given the following information:

The relationship of the total resistance to the individual resistances of the two resistors:

(1) $$\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}$$

The time rate of change of the resistance of the two resistors in Ohms/second:

(2) $$\frac{dR_1}{dt}=0.3$$

(3) $$\frac{dR_2}{dt}=0.2$$

We are asked to find $$\frac{dR}{dt}$$. If we implicitly differentiate (1) with respect to time $t$, we find:

$$-\frac{1}{R^2}\cdot\frac{dR}{dt}=-\frac{1}{R_1^2}\cdot\frac{dR_1}{dt}-\frac{1}{R_2^2}\cdot\frac{dR_2}{dt}$$

Multiplying through by $-R^2$, we have:

$$\frac{dR}{dt}=R^2\left(\frac{1}{R_1^2}\cdot\frac{dR_1}{dt}+\frac{1}{R_2^2}\cdot\frac{dR_2}{dt} \right)$$

We have everything we need except $R$, and so solving (1) for $R$, we obtain:

$$R=\frac{R_1R_2}{R_1+R_2}$$ and so we have:

$$\frac{dR}{dt}=\left(\frac{R_1R_2}{R_1+R_2} \right)^2\left(\frac{1}{R_1^2}\cdot\frac{dR_1}{dt}+\frac{1}{R_2^2}\cdot\frac{dR_2}{dt} \right)$$

Now, plugging in the given values, we find:

$$\left.\frac{dR}{dt} \right|_{(R_1,R_2)=(80,100)}=\left(\frac{80\cdot100}{80+100} \right)^2\left(\frac{1}{80^2}\cdot\frac{3}{10}+ \frac{1}{100^2}\cdot\frac{1}{5} \right)=\frac{107}{810}$$

To Ahmed and any other guests viewing this topic, I invite and encourage you to post other calculus problems here in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Fabulous explanation! Thank you so much!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top