I AICc value derivation (Akaike information criteria for finite samples)

mertcan
Messages
343
Reaction score
6
Hi everyone, initially let me introduce a concept widely used in ARIMA in the following. $$AICc = AIC + \frac {2k^2+2k} {n-k-1}$$ where n denotes the sample size and k denotes the number of parameters. Thus, AICc is essentially AIC with an extra penalty term for the number of parameters. Note that as n → ∞, the extra penalty term converges to 0, and thus AICc converges to AIC. I have derived AIC value but could provide me with the proof of the extra term $$\frac {2k^2+2k} {n-k-1}$$ particularly used in finite samples?
 
Physics news on Phys.org
Hi everyone would you mind if I asked why I can not receive any response?
 
I am still waiting for your responses?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top