- #1
- 18
- 4
So I have a question regarding the Alcubierre metric and the phenomena of stars on outer edges of galaxies moving at higher velocities than their orbital calculations state they should. When taking the accelerating expansion of space into account due to dark energy, could a sub-luminal Alcubierre-like effect be a possible explanation for why these stars appear to move faster than they should?
Take a star at the outer edge of the galaxy moving in a straight line, which in a gravity well as I understand it, is in orbit.
The space in front of that star is contracted due to the gravity of the galaxies center and contracts further the closer you move towards the center. In the direction away from the galaxy, space is relaxing as the strength of gravity weakens. However, when you take expansion due to dark energy into account, that space that is in the direction away from the galaxy is also experiencing increased expansion, some effective negative mass due to dark energy expansion, just not enough to completely overcome gravity.
That seems similar to the description made for an Alcubierre field, where an area of space behind an object is expanding, while the area in front of it contracts. It's not exact, since the area of expansion and contraction aren't at 180 degree angles to the star, but in principle it seems similar.
So, could it be possible that, from the stars reference frame, it actually travels at the exact velocity it should be traveling to orbit the galaxy, but from the perspective of a distance observer it appears to be moving faster than it should?
Take a star at the outer edge of the galaxy moving in a straight line, which in a gravity well as I understand it, is in orbit.
The space in front of that star is contracted due to the gravity of the galaxies center and contracts further the closer you move towards the center. In the direction away from the galaxy, space is relaxing as the strength of gravity weakens. However, when you take expansion due to dark energy into account, that space that is in the direction away from the galaxy is also experiencing increased expansion, some effective negative mass due to dark energy expansion, just not enough to completely overcome gravity.
That seems similar to the description made for an Alcubierre field, where an area of space behind an object is expanding, while the area in front of it contracts. It's not exact, since the area of expansion and contraction aren't at 180 degree angles to the star, but in principle it seems similar.
So, could it be possible that, from the stars reference frame, it actually travels at the exact velocity it should be traveling to orbit the galaxy, but from the perspective of a distance observer it appears to be moving faster than it should?