MHB Algebra Challenge: Express $(x^3-y^3)(y^3-z^3)(z^3-x^3)$ in Terms of a & b

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
AI Thread Summary
The discussion revolves around expressing the product $(x^3-y^3)(y^3-z^3)(z^3-x^3)$ in terms of the variables $a$ and $b$, defined by specific polynomial relationships involving $x$, $y$, and $z$. Participants clarify the correct expression to use, noting a previous mistake in signs. The problem remains unsolved, with one user indicating they spent significant time contemplating the solution. There is a request for a solution that incorporates the provided hint. The thread highlights the complexity of the algebraic expression and the collaborative effort to find a resolution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,x,\,y,\,z$ be real numbers such that $x^2y+y^2z+z^2x=a$ and $xy^2+yz^2+zx^2=b$.

Express $(x^3-y^3)(y^3-z^3)(z^3-x^3)$ in terms of $a$ and $b$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
Let $a,\,b,\,x,\,y,\,z$ be real numbers such that $x^2y+y^2z+z^2x=a$ and $xy^2+yz^2+zx^2=b$.

Express $(x^3+y^3)(y^3-z^3)(z^3-x^3)$ in terms of $a$ and $b$.
first term:$(x^3+y^3)--? $ or $(x^3-y^3)-- ? $
 
Albert said:
first term:$(x^3+y^3)--? $ or $(x^3-y^3)-- ? $

Ops...You're right, the plus should be a minus sign...sorry:(:mad:, I will edit my original post now.:o
 
anemone said:
Let $a,\,b,\,x,\,y,\,z$ be real numbers such that $x^2y+y^2z+z^2x=a$ and $xy^2+yz^2+zx^2=b$.

Express $(x^3-y^3)(y^3-z^3)(z^3-x^3)$ in terms of $a$ and $b$.

Hint:
Cube root of unity is used to simplify the problem.
 
not solved since long
here I close it(it took me lot of time may be 20hrs of thought)

$(x^3-y^3)(y^3-z^3)(z^3-x^3)$
= $(x^3-y^3)(y^3z^3-y^3x^3-z^6+z^3x^3)$
=$x^3y^3z^3-y^3x^6-z^6x^3+z^3x^6-y^6z^3+y^6x^3+y^3z^6-x^3z^3x^3$
= $-y^3x^6-z^6x^3+z^3x^6-y^6z^3+y^6x^3+y^3z^6$
= $(z^3x^6+y^3 z^6 + x^3y^6) - (y^3x^6 + x^3z^6 + y^6z^3)$
hence
$(x^3-y^3)(y^3-z^3)^(z^3-x^3)= ((xy^2)^3 + (yz^2)^3+(zx^2)^3) - ((x^2y)^3 +(y^2z)^3 + (z^2x)^3)\cdots(1)$
we know
$a^3+b^3 + c^3 = (a+b+c)^3 - 3(a+b)(b+c)(c+a)$
so $((xy^2)^3 + (yz^2)^3+(zx^2)^3) = (xy^2+yz^2+zx^2)^3- 3(xy^2+yz^2)(yz^2+zx^2)(zx^2+xy^2)$

= $(xy^2+yz^2+zx^2) - 3y(xy+z^2)z(x^2+yz)x(xz+y^2)$

= $b^2-3xyz(x^2+yz)(y^2+xz)(z^2+xy)\cdots(2)$

similarly

$((x^2y)^3 + (y^2z)^3+(z^2x)^3) =a^2-3xyz(x^2+yz)(y^2+xz)(z^2+xy)\cdots(3)$

from (1), (2) and (3) we get

$(x^3-y^3)(y^3-z^3)^(z^3-x^3)=b^3 - a^3 $

I would like to see the solution with the hint.
 
kaliprasad said:
I would like to see the solution with the hint.
Let $\omega$ be a complex cube root of unity, as in anemone's hint. Then $$(y-z)(z-x)(x-y) = b-a,$$ $$(y-\omega z)(z-\omega x)(x-\omega y) = \omega^2 b-\omega a = \omega^2(b - \omega^2 a),$$ $$(y-\omega^2 z)(z-\omega^2 x)(x-\omega^2 y) = \omega b-\omega^2 a = \omega(b - \omega a).$$

Therefore $$\begin{aligned}(y^3 - z^3)(z^3 - x^3)(x^3 - y^3) &= (y-z)(y-\omega z)(y-\omega^2z)\, (z-x)(z-\omega x)(z-\omega^2x)\, (x-y)(x-\omega y)(x-\omega^2y) \\ &= (y-z)(z-x)(x-y)\, (y-\omega z)(z-\omega x)(x-\omega y)\, (y-\omega^2 z)(z-\omega^2 x)(x-\omega^2 y) \\ &= (b-a)\omega^2 (b-\omega a)\omega(b-\omega a) \\ &= \omega^3(b-a)(b-\omega a)(b-\omega^2 a) = b^3 - a^3. \end{aligned}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top