Algebraic and topological sets

  • Thread starter Thread starter SW VandeCarr
  • Start date Start date
  • Tags Tags
    Sets Topological
SW VandeCarr
Messages
2,193
Reaction score
77
Is it an oversimplification to say a countably infinite set is an algebra while an uncountably infinite set is a topology?
 
Mathematics news on Phys.org
Yes.

It might make more sense with some surrounding context, but I do feel compelled to point out that some of my favorite topological spaces have countably many points, and some of my favorite algebras have uncountably many points.
 
Hurkyl said:
Yes.

It might make more sense with some surrounding context, but I do feel compelled to point out that some of my favorite topological spaces have countably many points, and some of my favorite algebras have uncountably many points.

The definition of a topological set in the following refers to the set T which consists (only?) of open sets.

http://knowledgerush.com/kr/encyclopedia/Topological_space/

On the other hand the following states that algebraic sets consist of closed sets.

http://mathworld.wolfram.com/AlgebraicSet.html

Perhaps I'm confusing closed and open sets with countable and uncountable sets. For example, the closed interval [0,1] is "countable" because 0 and 1 are included in the set.
 
Last edited by a moderator:
SW VandeCarr said:
The definition of a topological set in the following refers to the set T which consists (only?) of open sets.

http://knowledgerush.com/kr/encyclopedia/Topological_space/

The set T defines which sets are open. A given set can have many possible topologies. The open sets in Euclidean space have a metric topology, which is a topology T generated by all balls B(y, r) such that B(y, r) = {y | d(y, x) < r} where d is the Euclidean metric.
A simple topological space is the pair consisting of the set 2 = {a, b} with the topology T = {{a}, 2}, where only the singleton {a} and the entire set 2 is open (as well as the trivial empty set). Other possible topologies for this set include T = {{a}, {b}, 2} which is the discrete topology (every discrete point is open) and T = 2 which is the concrete or indiscrete topology ((2, T) is as impenetrable as a slab of concrete, the only non-empty open set is 2 itself).
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
34
Views
5K
Replies
15
Views
2K
Replies
3
Views
10K
Replies
3
Views
2K
Replies
5
Views
536
Replies
6
Views
2K
Back
Top