Algebraic Closure: Finite Fields & Equivalent Statements

  • Thread starter Thread starter PsychonautQQ
  • Start date Start date
  • Tags Tags
    closure
PsychonautQQ
Messages
781
Reaction score
10
I'm confused on why exactly the following two statements are equivalent for a finite field K:
-If K has no proper finite extensions, then K is algebraically closed.
-If every irreducible polynomial p with coefficients in K is linear then K is closed.

Can somebody help shed some light on this?
 
Last edited:
Physics news on Phys.org
It's likely that more people would be able to answer if you include some definitions and tell us what sort of object K is.
 
Haha sorry, I'm obviously very knew to this stuff. F is a finite field.
 
Let K be a field.
Form the polynomial ring K[x]. Let p(x) be an irreducible polynomial over K with degree n>0. Then, the qoutient ring L=K[x]/[p(x)] is a field, which is a finite extension of K with degree n (basis over K: {1, x, x2, ... xn-1}).
Thus: if there exists an irreducible polynomial over K with degree n>1, then K has a finite proper extension.
On the other hand, if K has a finite proper extension L of degree n>1, and if c ∈ L - K, then the set {1, c, c2, ... cn} is linearly dependent over K (since it contains n+1 elements, and the vector space L over K has dimension n).This means that there are a0, a1, ... an ∈ K such that if we put q(x) = a0 + a1x + ... + anx^n, then q(c)=0. The polynomial q(x) has an irreducibel factor p(x) over K such that p(c)=0. deg p(x) > 1, since otherwise, c ∈ K, which contradicts our assumption,
Thus: if K has a finite proper extension, then there exists an irreducible polynomial over K with degree > 1.
 
  • Like
Likes PsychonautQQ
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top