sin of 3 degrees can be written with just square roots, but sine of 17 degrees, 17 not a multiple of 3, requires solving a cubic equation, in addition to several quadratic equations.
According to Maple, sine 17 degrees is a zero of the polynomial
<br />
281474976710656\,{x}^{48}-3377699720527872\,{x}^{46}+18999560927969280<br />
\,{x}^{44}<br />
-66568831992070144\,{x}^{42}+162828875980603392\,{x}^{40}-295364007592722432\,{x}^{38}<br />
+411985976135516160\,{x}^{36}-<br />
452180272956309504\,{x}^{34}+396366279591591936\,{x}^{32}<br />
-280058255978266624\,{x}^{30}+160303703377575936\,{x}^{28}-74448984852135936\,{x}^{26}<br />
+28011510450094080\,{x}^{24}-8500299631165440\,{x}^{22}+2064791072931840\,{x}^{20}<br />
-397107008634880<br />
\,{x}^{18}+59570604933120\,{x}^{16}-6832518856704\,{x}^{14}+583456329728\,{x}^{12}<br />
-35782471680\,{x}^{10}+1497954816\,{x}^{8}-39625728\,{x}^{6}<br />
+579456\,{x}^{4}-3456\,{x}^{2}+1<br />