Algorithmic complexity of primes

  • Thread starter Thread starter DavidK
  • Start date Start date
  • Tags Tags
    Complexity Primes
DavidK
Messages
31
Reaction score
0
Every number can be considered a bit string. For a bit string one can define some algorithmic complexity (the shortest algorithm/program that reproduces the desired bit string). Can something be said, in general, about difference in complexity for primes as compared to composites?
 
Physics news on Phys.org
There are roughly (2^n / (n log 2)) primes of bit length n or less. (Since \pi(x) \approx x / \log x)

The best possible compression scheme is to represent each prime by its index, so that we use the positive integers less than roughly (2^n / (n log 2)) to represent the primes. It takes roughly (n - lg n - lg log 2) bits to denote such numbers.

(A good descriptive complexity scheme will be worse than this by some fixed additive constant)

However, n - \mathop{\mathrm{lg}} n - \mathop{\mathrm{lg}} \log 2 \in \Theta(n), so asymptotically, we haven't saved anything.
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top