Aliasing and discrete sinusoids

fisico30
Messages
362
Reaction score
0
Hello Forum,

a continuous time, continuous amplitude sinusoid like sin(2pi*f*t) is 2pi periodic:

sin(2pi*f*t)=sin(2pi*f*t+m*2pi)

where m can be any positive or negative integer. Let's sample the sinusoid at a sampling frequency fs (sample interval is ts=1/fs) and get the discrete signal

x[n]=sin(2pi*f*n*ts)=sin(2pi*f*n*ts+2pi*m)=sin{2pi(f+m/(n*ts))*n*ts}

This book says: if we let m be an integer multiple of n, m=k*n, we can replace the ration m/n with k so that

x[n]=sin(2pi*f*n*ts)=sin{2pi(f+kf*s)n*ts}

What happens if m is not an integer multiple of n? Both m and n are integers (I get that), but I don't understand the constraint m=k*n...That does not seem general enough...

thanks
fisico30
 
Physics news on Phys.org
well in discrete time, x[n] will not be defined for non integer arguments
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Back
Top