- #26

- 828

- 1

KVL and KCL are not universal, they result from solutions of Maxwell's equations with specific conditions, and solutions to his equations are not generic/universal. Even my crappy EM professor taught us how KVL comes from solutions to maxwell's equations; I don't think this should be a controversial subject.It's truly unbelievable that people try to argue this.

Like I said....for some reason it takes a while to sink in.

Also, ohm's law is not universal. Ohm's law is a linear relationship, and it is useful in many applications, but it takes one counter example to show that i-v relationship is not always linear and not described by Ohm's law.

For example, shockley's equation:

[itex] I = I_{s}e^{\frac{Vd}{nV_{T}}}[/itex]

You can't really manipulate that equation to resemble Ohm's law. The universe is actually nonlinear in many ways, and so its not far fetched to accept that ohm's law is not universal.

Here are some cool lecture notes I found for showing the current flow in a diode, and application of maxwell's equations to do it.

http://ocw.mit.edu/courses/electric...evices-spring-2007/lecture-notes/lecture8.pdf

Replace the lecture8.pdf up to 12 to get them all.

I feel bad for the OP tho, your thread is kind of off track, but I think you got your answer that KVL and KCL can be used with a capacitor.

Last edited: