Ambiguity in sense of rotation given a rotation matrix A

Click For Summary
SUMMARY

The discussion centers on the ambiguity of the rotation axis and angle derived from a rotation matrix A, as described in Goldstein's "Classical Mechanics" (3rd Ed, pg 161). It is established that both the eigenvector R and its negative -R correspond to the same axis of rotation, leading to multiple interpretations of the rotation angle, Φ and -Φ. The right-hand rule is proposed as a solution to this ambiguity, allowing for a consistent description of rotations in three-dimensional space. The discussion concludes that while the rotation matrix provides a single transformation, it can be represented in multiple ways depending on the chosen direction of the rotation axis.

PREREQUISITES
  • Understanding of rotation matrices and their properties
  • Familiarity with eigenvalues and eigenvectors in linear algebra
  • Knowledge of the right-hand rule for determining rotation direction
  • Basic concepts of 3D transformations and SO(3) group
NEXT STEPS
  • Study the properties of rotation matrices in 3D space
  • Learn about eigenvalues and eigenvectors in the context of linear transformations
  • Explore the right-hand rule and its applications in physics
  • Investigate the mathematical structure of the special orthogonal group SO(3)
USEFUL FOR

Students and professionals in physics, particularly those studying classical mechanics, robotics, or computer graphics, will benefit from this discussion. It is also valuable for mathematicians focusing on linear algebra and transformations in three-dimensional space.

Kashmir
Messages
466
Reaction score
74
Goldstein 3rd Ed pg 161.

Im not able to understand this paragraph about the ambiguity in the sense of rotation axis given the rotation matrix A, and how we ameliorate it.
Any help please.

"The prescriptions for the direction of the rotation axis and for the rotation angle are not unambiguous. Clearly if ##\mathbf{R}## is an eigenvector, so is ##-\mathbf{R}##; hence the sense of the direction of the rotation axis is not specified. Further, ##-\Phi## satisfies Eq. (4.61) if ##\Phi## does. Indeed, it is clear that the eigenvalue solution does not uniquely fix the orthogonal transformation matrix A. From the determinantal secular equation (4.52), it follows that the inverse matrix ##\mathrm{A}^{-1}=\tilde{\mathrm{A}}## has the same eigenvalues and eigenvectors as A. However, the ambiguities can at least be ameliorated by assigning ##\Phi## to ##A## and ##-\Phi## to ##A^{-1}##, and fixing the sense of the axes of rotation by the right-hand screw rule"
 
Last edited:
Physics news on Phys.org
Isn't this simply establishing a clockwise/anticlockwise convention for the rotation angle in relation to the axis?
 
  • Like
Likes   Reactions: vanhees71
PeroK said:
Isn't this simply establishing a clockwise/anticlockwise convention for the rotation angle in relation to the axis?
I'm not sure. This is what I know: We have been given a matrix ##A## which represents a rotation of vectors. It's eigenvector ##R## corresponding to +1 eigenvalue specify the line around which rotation happens. Trace(A) =##1+2cos\Phi##. Both ##\Phi## and ##-\Phi## satisfy it.
 
Kashmir said:
I'm not sure. This is what I know: We have been given a matrix ##A## which represents a rotation of vectors. It's eigenvectors ##R## specify the line of rotation. Trace(A) =##1+2cos\Phi##. Both ##\Phi## and ##-\Phi## satisfy it.
Technically, a matrix doesn't have specific eigenvectors, but eigenspaces. If ##\vec v## is an eigenvector, then so is ##-\vec v## and, in general, ##\alpha \vec v## for any scalar ##\alpha##.

In other words, you have a line, but a choice of two directions. Compare the positive and negative z-axes.
 
  • Like
Likes   Reactions: vanhees71
PeroK said:
Technically, a matrix doesn't have specific eigenvectors, but eigenspaces. If ##\vec v## is an eigenvector, then so is ##-\vec v## and, in general, ##\alpha \vec v## for any scalar ##\alpha##.

In other words, you have a line, but a choice of two directions. Compare the positive and negative z-axes.
Yes. I agree. But how to relate it to what the author is trying to say? Given A isn't there an ambiguity in the sense of rotation?
 
Kashmir said:
Yes. I agree. But how to relate it to what the author is trying to say?
Goldstsein is describing, in slighty elaborate old-fashioned language, precisely what I've said. And is proposing a "right-hand rule" to remove the ambiguity.
 
  • Like
Likes   Reactions: vanhees71 and Kashmir
PeroK said:
Goldstsein is describing, in slighty elaborate old-fashioned language, precisely what I've said. And is proposing a "right-hand rule" to remove the ambiguity.
Yes the wording was tough for me. Thank you again for helping me. :)
 
For example, take a rotation of ##\theta## about the z-axis. You can describe that in four ways, using the conventional right-hand rule:

1) Anticlockwise rotation of ##\theta## about the positive z-axis.

2) Clockwise rotation of ##-\theta## (or ##2\pi - \theta##) about the positive z-axis.

3) Clockwise rotation of ##\theta## about the negative z-axis.

4) Anticlockwise rotation of ##-\theta## (or ##2\pi - \theta##) about the negative z-axis.
 
  • Like
Likes   Reactions: vanhees71 and Kashmir
PeroK said:
For example, take a rotation of ##\theta## about the z-axis. You can describe that in four ways, using the conventional right-hand rule:

1) Anticlockwise rotation of ##\theta## about the positive z-axis.

2) Clockwise rotation of ##-\theta## (or ##2\pi - \theta##) about the positive z-axis.

3) Clockwise rotation of ##\theta## about the negative z-axis.

4) Anticlockwise rotation of ##-\theta## (or ##2\pi - \theta##) about the negative z-axis.
The matrix actually doesn't specify which one actually happens out of these 4 ?
 
  • #10
Kashmir said:
The matrix actually doesn't specify which one actually happens out of these 4 ?
In general, two matrices are equal iff all entries are equal. There can only be one matrix for this rotation. But, as above, that matrix will have a one-dimensional eigenspace corresponding to the axis of rotation and that defines two unit vectors with opposite directions. If we choose a right-hand rule, then that gets rid of two of the descriptions (the clockwise ones can go and we always describe rotations relative to the anticlockwise direction). That leaves us with:

1) Anticlockwise rotation of ##\theta## about the positive z-axis.

4) Anticlockwise rotation of ##-\theta## (or ##2\pi - \theta##) about the negative z-axis.

We have a single rotational matrix, ##R##, which can be described by:

1) The unit vector ##\hat n## and angle ##\theta##

4) The unit vector ##-\hat n## and angle ##-\theta##.

It's the same matrix, but two mappings onto the set of unit vectors and angle of rotation. Two descriptions of what that matrix does.

Generally, we do not try to remove that ambiguity. That's something we accept.
 
  • Like
Likes   Reactions: vanhees71
  • #11
There is no ambiguity given the right-hand rule and the axis of rotation. So we have a well-defined function ##(\vec{n},\varphi) \mapsto \hat{R} \in \mathrm{SO}(3)##, where ##\vec{n} \in \text{S}_1## (the unit sphere in 3D Euclidean space) and ##\varphi \in [0,2 \pi)##. That's one way to parametrize uniquely SO(3).

It's, however, not an injective map, i.e., to ##\hat{R} \in \mathrm{SO}(3)## there are two orientations of the axis of rotation ##\pm \vec{n}##. If ##(\vec{n},\vec{\varphi})## maps to ##\hat{R}##, so also ##(-\vec{n},2 \pi-\varphi)## maps to the same ##\hat{R}##.
 
  • #12
Actually the angular velocity is a principle object for kinematics of a rigid body. The angular velocity admits no ambiguity and does not require any angles of rotations for its definition. .
 
  • Like
Likes   Reactions: vanhees71
  • #13
Indeed, the angular velocity defined via the unique rotation of the body-fixed frame's Cartesian basis wrt. the space-fixed frame's Cartesian basis.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
10K
Replies
4
Views
6K