kakarotyjn
- 95
- 0
I'm reading Allen Hatcher's topology book.In order to prove a theorem about homotopic maps induce the same homomorphism of homology groups,given a homotopy F:X \times I \to Y from f to g,the author construct a prism operators
P:C_n (X) \to C_{n + 1} (Y) by P(\sigma ) = \sum\nolimits_i {( - 1)^i F \circ (\sigma \times 1)|[v_0 ,...,v_i ,w_i ,...,w_n ]} for \sigma :\Delta ^n \to X,where {F \circ (\sigma \times 1)} is the composition \Delta ^n \times I \to X \times I \to Y.
I don't understand how sigma*1 acts on the n+1 simplex,sigma acts on n simplex,what the 1 acts on?WhyF \circ (\sigma \times 1)|[\mathop v\limits^ \wedge _0 ,w_0 ,...,w_n ] equals to g \circ \sigma = g_\# (\sigma )
Need helps,thank you!
P:C_n (X) \to C_{n + 1} (Y) by P(\sigma ) = \sum\nolimits_i {( - 1)^i F \circ (\sigma \times 1)|[v_0 ,...,v_i ,w_i ,...,w_n ]} for \sigma :\Delta ^n \to X,where {F \circ (\sigma \times 1)} is the composition \Delta ^n \times I \to X \times I \to Y.
I don't understand how sigma*1 acts on the n+1 simplex,sigma acts on n simplex,what the 1 acts on?WhyF \circ (\sigma \times 1)|[\mathop v\limits^ \wedge _0 ,w_0 ,...,w_n ] equals to g \circ \sigma = g_\# (\sigma )
Need helps,thank you!
Last edited: