An Elegant Solution to a Tricky Integral

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The integral discussed is evaluated as follows: starting with the substitution \( \sin(x) + \cos(x) = t \), the integral transforms into a more manageable form. The key steps involve using trigonometric identities and substitutions, ultimately leading to the result of \( -\arctan\left(\sqrt{[\sin(x)+\cos(x)]^4-1}\right) + C \). An alternative approach using the substitution \( u = 1 + \sin(2x) \) simplifies the integral further, yielding \( -\sec^{-1}(\sin(2x)+1) + C \). Both methods demonstrate effective techniques for solving complex integrals.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with trigonometric identities
  • Experience with substitution methods in integration
  • Knowledge of inverse trigonometric functions
NEXT STEPS
  • Study advanced integration techniques, focusing on trigonometric substitutions
  • Learn about the properties and applications of inverse trigonometric functions
  • Explore the use of substitution in solving integrals involving trigonometric functions
  • Practice evaluating integrals using different methods to compare efficiency
USEFUL FOR

Mathematicians, calculus students, educators, and anyone interested in advanced integration techniques and trigonometric identities.

sbhatnagar
Messages
87
Reaction score
0
Evaluate the integral

\[ \int \frac{\sin(x)-\cos(x)}{(\sin{(x)}+\cos{(x)})\sqrt{\sin(x)\cos(x)+ \sin^2(x)\cos^2(x)}} dx\]

The problem above is not necessarily difficult; however, it can be almost impossible to evaluate if one doesn’t know the right “trick”.
 
Physics news on Phys.org
I would do the following:
Let \[\sin(x)+\cos(x)=t \Rightarrow [\cos(x)-\sin(x)]dx=dt \Rightarrow -[(\sin(x)-\cos(x)]dx=dt \Rightarrow [\sin(x)-\cos(x)]dx=-dt \]
and \[\sin(x)\cos(x)=\frac{t^2-1}{2} \]

Thus, the integral becomes:
\[ - \int \frac{dt}{t\sqrt{\frac{t^2-1}{2}\left(1+\frac{t^2-1}{2}\right)}}=-2 \int \frac{dt}{t\sqrt{t^4-1}}=\frac{-1}{2} \int \frac{4t^3}{t^4\sqrt{t^4-1}}\]

Let \[ t^4-1= u \Rightarrow 4t^3dt=du \] so the integral becomes:
\[ \frac{-1}{2} \int \frac{du}{(u+1)\sqrt{u}}=-\arctan(\sqrt{u})\]

Doing the back-substitution we obtain:
\[- \arctan\left(\sqrt{[\sin(x)+\cos(x)]^4-1}\right)+C\]

I'm not sure my attempt is correct.
 
Last edited:
Hi Siron! You made it. Here's my idea:

\[ \begin{align*} \int \frac{\sin(x)-\cos(x)}{(\sin{(x)}+\cos{(x)})\sqrt{\sin(x)\cos(x)+ \sin^2(x)\cos^2(x)}} dx &= -\int \frac{\cos^2(x)-\sin^2(x)}{(1+2\sin{(x)}\cos{(x)})\sqrt{\sin(x) \cos(x)(\sin(x)\cos(x)+1)}} dx\\ &= -\int \frac{\cos(2x)}{(1+\sin(2x))\sqrt{\frac{\sin(2x)}{2} \left( \frac{\sin(2x)}{2}+1 \right)}} dx \\ &= -\int \frac{2\cos(2x)}{(1+\sin(2x))\sqrt{\sin(2x)(\sin(2x)+2)}} dx\end{align*}\]

By the substitution \( u=1+\sin(2x) \),

\[ -\int \frac{1}{u\sqrt{u^2-1}}du =-\sec^{-1}(u)+C=-\sec^{-1}(\sin(2x)+1)+C \]
 
Last edited:
sbhatnagar said:
Hi Siron! You made it. Here's my idea:

\[ \begin{align*} \int \frac{\sin(x)-\cos(x)}{(\sin{(x)}+\cos{(x)})\sqrt{\sin(x)\cos(x)+ \sin^2(x)\cos^2(x)}} dx &= -\int \frac{\cos^2(x)-\sin^2(x)}{(1+2\sin{(x)}\cos{(x)})\sqrt{\sin(x) \cos(x)(\sin(x)\cos(x)+1)}} dx\\ &= -\int \frac{\cos(2x)}{(1+\sin(2x))\sqrt{\frac{\sin(2x)}{2} \left( \frac{\sin(2x)}{2}+1 \right)}} dx \\ &= -\int \frac{2\cos(2x)}{(1+\sin(2x))\sqrt{\sin(2x)(\sin(2x)+2)}} dx\end{align*}\]

By the substitution \( u=1+\sin(2x) \),

\[ -\int \frac{1}{u\sqrt{u^2-1}}du =-\sec^{-1}(u)+C=-\sec^{-1}(\sin(2x)+1)+C \]
why we chose u=1+\sin(2x)
 
oasi said:
Why substitute $u=1+\sin(2x)$?

...because it make the solution easy.
 
I wouldn't consider that argument enough to say why it works, and actually, the answer is very simple, for the one who asked why it works, just check the integrand, and see the derivative of the substitution involved, everything works nicely.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K