An inequality about inner product

tghg
Messages
12
Reaction score
0
If α,β,γ are vectors in the Euclid space V, please show that
|α-β||γ|≤|α-γ||β|+|β-γ||α|,where |α|=√(α,α)
and point out when the equal mark holds.

Can someone help me out?
 
Physics news on Phys.org
This question reeks of Triangle Inequality, I'm assuming the relation: Abs(A-B) <= Abs(A) + Abs(B)

Abs(A-B)Abs(C) <= Abs(A)Abs(C) + Abs(C)Abs(B)
Abs(A-C)Abs(B) <= Abs(A)Abs(B) + Abs(C)Abs(B)
Abs(B-C)Abs(A) <= Abs(B)Abs(A) + Abs(C)Abs(A)

Abs(C)Abs(B) = Abs(A-C)Abs(B) - Abs(A)Abs(B)
Abs(A)Abs(C) = Abs(B-C)Abs(A) - Abs(B)Abs(A)

Abs(A-B)Abs(C) <= Abs(A-C)Abs(B) + Abs(B-C)Abs(A) - 2Abs(A)Abs(B)

I'm stumped about how to remove the -2Abs(A)Abs(B). :mad:

Equality if A=B=C
 
Thanks very much!

Note that 2Abs(A)Abs(B)>=0, so
Abs(A-C)Abs(B) + Abs(B-C)Abs(A) - 2Abs(A)Abs(B) <= Abs(A-C)Abs(B) + Abs(B-C)Abs(A)
thus, Abs(A-B)Abs(C) <= Abs(A-C)Abs(B) + Abs(B-C)Abs(A) - 2Abs(A)Abs(B)
<= Abs(A-C)Abs(B) + Abs(B-C)Abs(A).
It's obvious that if A=B=C the equal mark holds.
But I think there are some other cases that satisfy the the equality.
 
Last edited:
How about we go from...

Abs(A-B)Abs(C) <= Abs(A-C)Abs(B) + Abs(B-C)Abs(A) - 2Abs(A)Abs(B)

to basic knowledge about numbers, e.g. 2Abs(A)Abs(B) >= 0, so
Abs(A-C)Abs(B) + Abs(B-C)Abs(A) - 2Abs(A)Abs(B) <= Abs(A-C)Abs(B) + Abs(B-C)Abs(A) which gives you what you want

Back to basics :p
 
Oh,my god!I found a severe mistake. We can't claim that
Abs(C)Abs(B) = Abs(A-C)Abs(B) - Abs(A)Abs(B)
Abs(A)Abs(C) = Abs(B-C)Abs(A) - Abs(B)Abs(A)


So, I'm very sorry to say that we didn't verify the inequality.
 
The correct relationship is

Abs(C)Abs(B) >= Abs(A-C)Abs(B) - Abs(A)Abs(B)
Abs(A)Abs(C) >= Abs(B-C)Abs(A) - Abs(B)Abs(A)

but ASAICS this leads nowhere. :(
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top