An inequality, in need of help.

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Inequality
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
i need to prove that if x>y>0 and n>1 n natural then:
n(x-y)y^(n-1)<x^n-y^n<n(x-y)x^(n-1)

i tried almost everything from n(x^n-y^n)/x-y>(x^n-y^n)/x-y>1

but to get nothing, can someone help?
 
Physics news on Phys.org
You know, do you not, that xn- yn= (x- y)(xn-1+ xn-2y+ ...+ xyn-2+ yn-1)?
 
Last edited by a moderator:
well thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top