Krizalid1
- 106
- 0
Prove that $\displaystyle\sum_{n=1}^\infty\frac1{n H_n}=\infty$ where $H_n$ is the n-term of the harmonic sum.
Krizalid said:Prove that $\displaystyle\sum_{n=1}^\infty \frac1{n H_n}=\infty$ where $H_n$ is the n-term of the harmonic sum.
Krizalid said:(1) is false. The fact $H_n>\ln n$ for large $n$ implies that $\displaystyle\frac{1}{{\ln n}} > \frac{1}{{{H_n}}} \Rightarrow \frac{1}{{n{H_n}}} < \frac{1}{{n\ln n}},$ however this doesn't provide information.
Krizalid said:Okay that works but it's not clear why exactly $H_n<2\ln n.$ Can you prove it analytically?
i'm agree with krizalidKrizalid said:(1) is false. The fact $H_n>\ln n$ for large $n$ implies that $\displaystyle\frac{1}{{\ln n}} > \frac{1}{{{H_n}}} \Rightarrow \frac{1}{{n{H_n}}} < \frac{1}{{n\ln n}},$ however this doesn't provide information.