B An odd integer series formula?

AI Thread Summary
The discussion revolves around a mathematical exploration of a formula connecting the difference between squares of successive integers and the sums of their roots. It presents a sequence of odd integers generated by incrementing values of x and y, demonstrating that the differences between successive results yield odd integers. The relationship is further analyzed through variations of the equation, revealing connections to cubic functions and other mathematical concepts. Participants express curiosity about the uniqueness of this series and its potential links to known integer sequences. The conversation encourages further mathematical inquiry and skill development.
Dennis Plews
Messages
37
Reaction score
4
A few months ago I posted a simple equation that shows an interesting nexus between the difference between the squares of successive integers and the sums of their roots, viz:

Where y = x+1 then (x + y) = (y2 - x2)

Recently I expanded this relationship as follows:

Where n is any integer and y = (x + n), then n(x+y) = (y2 - x2)

Starting with x = 1 and y = 2 and increasing the x and y values by 1 at each iteration, this seems to produce an odd integers sequence as follows:

(1 + 2) = 3 = (4 - 1)
(2 + 3) = 5 = (9 - 4)
(3 + 4) = 7 = (16 - 9)
(4 + 5) = 9 = (25 - 16)
(5 + 6) = 11 = (36 - 25)...

Using the y = (x + n) form with the x value at 1 and increasing y by (x + n) gives a similar result:

1(1 + 2) = 3 = (4 - 1)
2(1 + 3) = 8 = (9 - 1)
3(1 + 4) = 15 = (16 - 1)
4(1 + 5) = 24 = (25 - 1)
5(1 + 6) = 35 = (36 -14)...

The difference between the successive results values being a sequence of odd integers.

Using the y = (x + n) form with the x value at 2 gives a similar result:

1(2 + 3) = 5 = (9 - 4)
2(2 + 4) = 12 = (16 - 4)
3(2 + 5) = 21 = (25 - 4)
4(2 + 6) = 32 = (36 - 4)
5(2 + 7) = 45 = (49 - 4)...

The difference between the successive results values again being a sequence of odd integers.

Not being very sophisticated mathematically I looked through Wikipedia’s integer series page (https://en.wikipedia.org/wiki/Integer_sequence) and found nothing like this series. Fibonacci numbers seem similar. I am curious to learn if this relationship is already known and whether it has any relationship to other known mathematical relationships.
 
Mathematics news on Phys.org
To be frank here, I'm not quite sure what the interesting thing about the relationships that you found is - so if I missed it, please do point it out.

Dennis Plews said:
Starting with x = 1 and y = 2 and increasing the x and y values by 1 at each iteration, this seems to produce an odd integers sequence as follows:

(1 + 2) = 3 = (4 - 1)
(2 + 3) = 5 = (9 - 4)
(3 + 4) = 7 = (16 - 9)
(4 + 5) = 9 = (25 - 16)
(5 + 6) = 11 = (36 - 25)...
Well, if you increased x and y by 1 each, the sum (x+y) increases by 2 for each step, so if u started with an odd value, you will naturally generate a sequence of odd integers.

Dennis Plews said:
The difference between the successive results values being a sequence of odd integers.
Well the difference between successive steps is
##[(y+1)^2 - x^2] - [y^2 - x^2] = 2y + 1##
which naturally forms a sequence of successive odd integers since you're increasing ##y## by 1 each step.
 
  • Like
Likes Dennis Plews
Difference of squares: ##y^2-x^2=(y+x)(y-x)##. Substitute ##y=x+n## to get ##y^2-x^2=(y+x)n##.
 
  • Like
Likes Dennis Plews
Dennis Plews said:
A few months ago I posted a simple equation that shows an interesting nexus between the difference between the squares of successive integers and the sums of their roots, viz:

Where y = x+1 then (x + y) = (y2 - x2)

Recently I expanded this relationship as follows:

Where n is any integer and y = (x + n), then n(x+y) = (y2 - x2)
...
Yes, a little over nine months ago you started such a thread.

In that thread you discussed the equation x + y = y2 - x2 .

I assume you intend the 2 to be used as an exponent here also.

The equation ##\ y = x+n \ ## is equivalent to the equation ##\ y - x=n \ ##.

Multiplying that ##\ y+x\ ## gives ##\ (y - x)(y+x) =n(y+x) \ ##.

This equation has a set of solutions in addition to those for the initial equation. These are the solutions to ##\ y=x\ ##.

Of course, ##\ (y - x)(y+x) =n(y+x) \ ## is the same as ##\ y^2 - x^2 =n(y+x) \ ##.
 
  • Like
Likes Dennis Plews
Let f(x) = x2 .

What you have is variations on f(x+1) - f(x), for integer values of x.

For the case with n, it's essentially a similar difference with a cubic function.
 
I appreciate all of your comments. I have learned something from each and am encouraged to further my math skills.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top