Analyzing Convergence and Rewriting Sequences: A Mathematical Approach

  • Thread starter Thread starter Mappe
  • Start date Start date
  • Tags Tags
    Sequences Tools
Mappe
Messages
29
Reaction score
0
I need the math tools to understand and analyze sequences and their convergence. I know for example that the fibonacci series can be rewritten such that we can calculate for example nr 153 without knowledge of previous numbers. What math subjects is needed to take care of more complicated sequences, rewriting them in an understandable fashion and understanding their convergence?
 
Mathematics news on Phys.org
Recursively defined sequences may behave in a surprisingly complicated fashion. Periodicity with arbitrarily large periods is possible, as well as a-periodic (but bounded) behavior. In all but the simplest cases, it is not possible to write down explicit formulas for their ##n##th term. Perhaps you will enjoy An Introduction to Difference Equations by Elayd, Springer, 3rd edition, 2005.
 
You may want to have a look at generating functions.
 
Given a sequence ## a_{n} ## in recursive way, so ## a_{n}=f(a_{n-1})## where ##f## is a function, you can start supposing that converge and solving the equation ## l=f(l) ##. The result (if there is a result) will be a candidate for your sequence ## a_{n} ##. For example given

## a_{n}=\frac{1+a_{n-1}}{a_{n-1}}## with initial data ##a_{0}=1 ##.

You can search a limit solving ## l=\frac{1+l}{l} ## that gives you ##l^2-l-1=0## so ## l=\frac{1}{2}\pm\frac{\sqrt{5}}{2}##. A good candidate is ##\frac{1}{2}+\frac{\sqrt{5}}{2}##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top