Analyzing Racquet Ball Collision: Momentum, Time & Kinetic Energy

AI Thread Summary
The discussion focuses on the analysis of a racquet ball's collision with a wall, addressing momentum, time, and kinetic energy. The change in momentum is calculated as 6.00 kg-m/s using the formula Δp = m(vf - vi). The time of contact with the wall is confirmed to be 0.07 seconds as stated in the problem. The change in kinetic energy is computed to be -17.1 J, indicating energy loss during the inelastic collision. Overall, the calculations and reasoning presented are deemed correct, assuming no numerical errors.
ctwokay
Messages
27
Reaction score
0

Homework Statement



A racquet ball with mass m = 0.223 kg is moving toward the wall at v = 16.3 m/s and at an angle of θ = 35° with respect to the horizontal. The ball makes a perfectly elastic collision with the solid, frictionless wall and rebounds at the same angle with respect to the horizontal. The ball is in contact with the wall for t = 0.07 s.

Now the racquet ball is moving straight toward the wall at a velocity of vi = 16.3 m/s. The ball makes an inelastic collision with the solid wall and leaves the wall in the opposite direction at vf = -10.6 m/s. The ball exerts the same average force on the ball as before.

1. What is the magnitude of the change in momentum of the racquet ball?
2. What is the time the ball is in contact with the wall?
3.What is the change in kinetic energy of the racquet ball?

Homework Equations



Δp=m(vf-vi)
ft=Δp
KE=1/2mv^2


The Attempt at a Solution


The first question I get 6.00kg-m/s by using m(vf-vi) which is 0.223*(-10.6-16.3). Is that correct?

Second question I use ft=Δp which gives me t=Δp/ave force; which i have the values are 6.00/85.1=0.0704s but it seems to me that the time should be lesser cause when travel without any angles it cuts down the time. Is the caluation correct?

The third question is ΔKE=1/2m(vf^2-vi^2) which i get 1/2*0.223*(10.6^2-16.3^2)
which i get -17.1J.

All 3 question just want to check am I doing the correct way,thanks for helping out.
 
Physics news on Phys.org
I didn't check the numbers but your reasoning on every question is correct so assuming you made no calculation errors your answers should be correct.

In regards to your second question, the time the ball was in contact with the wall is given in the problem statement.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top