Analyzing the Analyticity of ln (z)

Void123
Messages
138
Reaction score
0

Homework Statement



How would I prove that ln (z) is analytic?


Homework Equations



...



The Attempt at a Solution



I rewrote it as ln (z) = ln (r) + i\theta. But, I'm not quite sure how to apply Cauchy-Riemman conditions here.
 
Physics news on Phys.org
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial f}{\partial \theta}\frac{\partial \theta}{\partial x}

if you want to use the polar coordinates. Remember also that CR-equation can be written as

i \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top