MHB Analyzing the Complex Function $g(z)$

Dustinsfl
Messages
2,217
Reaction score
5
$$
g(z) = z^{87} + 36z^{57} + 71z^{4} + z^3 - z + 1
$$

For $|z|<1$.

Let $f(z) = 71z^4$.

Then $|f(z) - g(z)| = |-z^{87} - 36z^{57} - z^3 + z - 1| \leq |z|^{87} + 36|z|^{57} + |z|^3 + |z| + 1 < 71|z^4|$

So g has the same number of zeros as f which is 0 with multiplicity of 4.

Correct?
 
Physics news on Phys.org
dwsmith said:
$$
g(z) = z^{87} + 36z^{57} + 71z^{4} + z^3 - z + 1
$$

For $|z|<1$.

Let $f(z) = 71z^4$.

Then $|f(z) - g(z)| = |-z^{87} - 36z^{57} - z^3 + z - 1| \leq |z|^{87} + 36|z|^{57} + |z|^3 + |z| + 1 < 71|z^4|$

So g has the same number of zeros as f which is 0 with multiplicity of 4.

Correct?

Isn't the number of roots the same as the order of the polynomial? Or do you want non-repeated roots?
 
dwsmith said:
$$
g(z) = z^{87} + 36z^{57} + 71z^{4} + z^3 - z + 1
$$

For $|z|<1$.

Let $f(z) = 71z^4$.

Then $|f(z) - g(z)| = |-z^{87} - 36z^{57} - z^3 + z - 1| \leq |z|^{87} + 36|z|^{57} + |z|^3 + |z| + 1 < 71|z^4|$

So g has the same number of zeros as f which is 0 with multiplicity of 4.

Correct?

Your last inequality cannot be right, the right hand side goes to zero as z goes zero, while the left hand side goes to 1.

CB
 
dwsmith said:
$$
g(z) = z^{87} + 36z^{57} + 71z^{4} + z^3 - z + 1
$$

For $|z|<1$.

Let $f(z) = 71z^4$.

Then $|f(z) - g(z)| = |-z^{87} - 36z^{57} - z^3 + z - 1| \leq |z|^{87} + 36|z|^{57} + |z|^3 + |z| + 1 < 71|z^4|$ You should make it clear that you are applying Rouché's theorem for the disc $\color{red}|z|<1$ and that you therefore want to show that $\color{red}|f(z)-g(z)|<|f(z)|$ on the boundary of the disc. So you should have said that $\color{red}|f(z) - g(z)|<71|z^4|$ when $\color{red}|z|=1.$

So g has the same number of zeros as f which is 0 with multiplicity of 4. The number of zeros is 4. The fact that the four zeros of $\color{red}f(z)$ all occur at $\color{red}z=0$ is irrelevant.

Correct? Since you haven't said what you are being asked to prove, it's hard to know whether the answer is correct. If the question was asking for the number of zeros of $\color{red}g(z)$ inside the unit disc, then yes, you have provided the ingredients for showing that the answer is 4. But the solution could do with a good deal more in the way of explanation.
...
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...