MHB Andrew's question at Yahoo Answers regarding maximizing the area of a rectangle

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Area Rectangle
AI Thread Summary
To maximize the area of a rectangle with one side on the x-axis and vertices on the curve y=4/(4+x^2), the area function is defined as A(x) = (8x)/(x^2+4). By differentiating A(x) and setting the derivative A'(x) to zero, the critical point found is x=2, indicating a relative maximum. The vertices of the rectangle at this maximum area are (-2, 1/2), (2, 1/2), (2, 0), and (-2, 0). This analysis confirms the optimal dimensions for the rectangle's area.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

A rectangle has one side on the x-axis and two vertices on the curve y=4/4+x^2?

Find the vertices of the rectangle with maximum area.
Vertices =
Enter your answers as a comma-separated list of ordered (x,y) pairs, e.g., (1,0),(8,0),(1,4),(8,4).

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Andrew,

The base of the rectangle will be $b=2x$ where $0\le x$ and the height of the rectangle will be $h=\dfrac{4}{4+x^2}$. Hence the area function is:

$$A(x)=2x\cdot\frac{4}{4+x^2}=\frac{8x}{x^2+4}$$

To find our critical values, we may differentiate this area function with respect to $x$ and equate the result to zero:

$$A'(x)=\frac{\left(x^2+4\right)(8)-(8x)(2x)}{\left(x^2+4\right)^2}=\frac{8(2+x)(2-x)}{\left(x^2+4\right)^2}=0$$

The non-negative critical value here is:

$$x=2$$

And we see that the derivative is positive to the left of this value and negative to the right, and so by the first derivative test we may conclude that this critical value is at a relative maximum.

Thus, our vertices are:

$$\bbox[5px,border:2px solid #207498]{\left(-2,\frac{1}{2}\right),\,\left(2,\frac{1}{2}\right),\,(2,0),\,(-2,0)}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top