Angle between vector and tangent vector

Click For Summary
The discussion focuses on proving that the angle between the logarithmic spiral vector R(t) = (e^t cos(t), e^t sin(t)) and its tangent vector R'(t) is independent of t. The user initially attempted to show that the dot product of R(t) and R'(t) is zero, which would indicate a constant angle, but found that the dot product is actually e^(2t). They then tried using the dot product formula to find a constant angle, but concluded that the angle still depends on t. A suggestion was made to recheck the calculation of the magnitude of the tangent vector, which could lead to a resolution of the problem. The discussion emphasizes the importance of correctly calculating vector magnitudes to determine the angle.
Prof. 27
Messages
49
Reaction score
1

Homework Statement


My problem is:

For the logarithmic spiral R(t) = (e^t cost, e^t sint), show that the angle between R(t) and the tangent vector at R(t) is independent of t.

Homework Equations


N/A

The Attempt at a Solution


The tangent vector is just the vector that you get when you take the derivative of each element of the vector so:

R(t) = (e^t cost, e^t sint)
R'(t) = (e^t*cost-e^t*sint, e^t*sint + e^t*cost)

First I tried to show that the dot product was zero using the multiply the x's and y's then add method. This would imply that the angle between the vector and tangent vector was always ninety degrees; unfortunately as can be seen from an inspection of the two vectors, the dot product is e^2t.

Then I went the long route and used the dot product formula (a dot b = ||a||*||b||*cos(@)) to try to calculate a single angle @ that held constant between them. This was also a bust.

e^2t = ||R(t)|| * ||R'(t)||* cos(@) = sqrt(e^2t) * sqrt(2*e^2t) * cos(@)
= sqrt(2*e^4t) * cos(@).

It is easy to then see that @ = cos^-1(e^2t / sqrt(2*e^(4t)), which is obviously still dependant on t.

Any ideas?
 
Physics news on Phys.org
Prof. 27 said:

Homework Statement


My problem is:

For the logarithmic spiral R(t) = (e^t cost, e^t sint), show that the angle between R(t) and the tangent vector at R(t) is independent of t.

Homework Equations


N/A

The Attempt at a Solution


The tangent vector is just the vector that you get when you take the derivative of each element of the vector so:

R(t) = (e^t cost, e^t sint)
R'(t) = (e^t*cost-e^t*sint, e^t*sint + e^t*cost))##

First I tried to show that the dot product was zero using the multiply the x's and y's then add method. This would imply that the angle between the vector and tangent vector was always ninety degrees; unfortunately as can be seen from an inspection of the two vectors, the dot product is e^2t.

Then I went the long route and used the dot product formula (a dot b = ||a||*||b||*cos(@)) to try to calculate a single angle @ that held constant between them. This was also a bust.

e^2t = ||R(t)|| * ||R'(t)||* cos(@) = sqrt(e^2t) * sqrt(2*e^2t) * cos(@)
= sqrt(2*e^4t) * cos(@).

It is easy to then see that @ = cos^-1(e^2t / sqrt(2*e^(4t)), which is obviously still dependant on t.

Any ideas?

What is ##\sqrt{2e^{4t}}##?
 
Prof. 27 said:

Homework Statement


My problem is:

For the logarithmic spiral R(t) = (e^t cost, e^t sint), show that the angle between R(t) and the tangent vector at R(t) is independent of t.

Homework Equations


N/A

The Attempt at a Solution


The tangent vector is just the vector that you get when you take the derivative of each element of the vector so:

R(t) = (e^t cost, e^t sint)
R'(t) = (e^t*cost-e^t*sint, e^t*sint + e^t*cost)

First I tried to show that the dot product was zero using the multiply the x's and y's then add method. This would imply that the angle between the vector and tangent vector was always ninety degrees; unfortunately as can be seen from an inspection of the two vectors, the dot product is e^2t.

Then I went the long route and used the dot product formula (a dot b = ||a||*||b||*cos(@)) to try to calculate a single angle @ that held constant between them. This was also a bust.

e^2t = ||R(t)|| * ||R'(t)||* cos(@) = sqrt(e^2t) * sqrt(2*e^2t) * cos(@)
Note that ##\sqrt{e^{2t}} = e^t##. Then recheck your ##\|\vec R'\| = \sqrt{2e^{2t}}##. Get it right and that last line will do it for you.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
7K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K