- #1
- 111
- 0
Does anybody have a link to an introduction to the theory and techniques surrounding ARPES?
Here is a description of the work on ARPES being done at Stanford University.
http://arpes.stanford.edu/research.html
Many years ago I read (in The Atomic Nucleus by Evans) that the photoelectrons tended to come off at right angles with respect to the photon, and along the E vector for polarized light.
Er... no. That would not make any sense since we have normal emission all the time.
Note that in most photoemission, the normal component of the momentum is not conserved. Only the in-plane momentum is, especially in layered, 2D structures.
Zz.
In Evans, The Atomic Nucleus, in chapter 24, Photoelectric Effect, in paragraph b Directional Distributions of Photoelectrons (page 696), it states "Especially at low photon energies, the photoelectrons tend to be ejected along the electric vector of the incident radiation, hence at right angles to the direction of incidence." Several plots of angular distributions are also shown.
The photoelectric interaction of photons with electrons cannnot occur on free electrons, because energy and momentum cannot be simultaneously conserved. So there has to be something that can absorb recoil momentum. It is also hard to calculate exactly on bound electrons. This is the main reason why the photoelectric cross section drops off so quickly above the binding energy of K-shell electrons, and the Compton cross section becomes relatively larger (until pair production becomes dominant). In Compton scattering, a secondary photon plus the Compton electron together can simultaneously match both the energy and momentum of the incoming photon.