Angular Momentum of a Particle Confusion

Click For Summary
SUMMARY

The discussion clarifies the distinction between angular momentum calculations for particles and rigid bodies. Angular momentum for a particle is given by the equation L = r × p, while for a rigid body, it is expressed as L = Iω, where I is the moment of inertia and ω is the angular velocity. The pulley is indeed treated as a rigid body, and the linear velocity at any point can be converted to angular velocity using the relationship ω = v/r. It is essential to use the tangential velocity when applying these equations.

PREREQUISITES
  • Understanding of angular momentum concepts
  • Familiarity with rigid body dynamics
  • Knowledge of moment of inertia (I) and angular velocity (ω)
  • Basic vector operations, particularly cross products
NEXT STEPS
  • Study the derivation of angular momentum for rigid bodies using L = Iω
  • Explore the relationship between linear and angular velocity in rotating systems
  • Learn about the moment of inertia for different shapes and configurations
  • Investigate the application of angular momentum in real-world mechanical systems
USEFUL FOR

Students studying physics, particularly those focusing on mechanics, as well as educators and anyone involved in teaching or learning about angular momentum and rigid body dynamics.

Speedking96
Messages
104
Reaction score
0

Homework Statement



I was reading the textbook section on angular momentum, and I'm having some difficulty grasping angular momentum.

Here is a question:

upload_2014-12-12_22-9-24.png


In the book, it says that the angular momentum L is equal to vector r cross vector p for a particle. But, for a rigid body, the equation is L = Iw.

In this case, why isn't the pulley treated as a rigid object. Does this mean that you can take the cross product to find the angular momentum in any case?

If someone could please clarify this. Thank you.
 

Attachments

  • upload_2014-12-12_22-9-9.png
    upload_2014-12-12_22-9-9.png
    4.6 KB · Views: 480
Physics news on Phys.org
L=r×p ::this equation means rotational
Angular momentum is the. Moment of linear momentum.
L=Iw:: this is analogous to p=MV.but
Thing to be remembered is I can be found for rigid body only. If body is non rigid we have to find L of each particle at any
Instance and add. So this equation is used generally for rigid bodies only. That doesn't imply u can't use the first equation for rigid bodies. only you should be carefull about taking correct value of r .
 
  • Like
Likes   Reactions: Speedking96
Speedking96 said:
In this case, why isn't the pulley treated as a rigid object. Does this mean that you can take the cross product to find the angular momentum in any case?

If someone could please clarify this. Thank you.
The pulley is treated as a rigid body. What is the angular momentum for a ring? How is the angular velocity of the pulley related to the linear velocity of its rim?
 
For an assembly of particles ##\vec L = \Sigma {\vec r_i \times \vec p_i} = \Sigma {m_i \vec r_i \times \vec v_i}##. For a rigid body rotating with vector ##\vec \omega##, ##\vec v_i= \vec \omega \times \vec r_i ##, so ##\vec L = \Sigma {m_i \vec r_i \times (\vec \omega \times \vec r_i)}##. If ##\vec s_i## is the component of ##\vec r_i## orthogonal to ##\omega##, this reduces to ##\vec L = \Sigma {m_i (\vec s_i^2) \vec \omega} = \vec \omega\Sigma {m_i (\vec s_i^2)} = \vec \omega I##
 
  • Like
Likes   Reactions: Speedking96
ehild said:
The pulley is treated as a rigid body. What is the angular momentum for a ring? How is the angular velocity of the pulley related to the linear velocity of its rim?
When pulley is treated as rigid body and if you know linear velocity if any point ,then divide that velocity with perpendicular distance from axis of rotation and you'll get angular velocity.
 
@vishnu: I asked the OP, as I wanted him to answer his own question. Do not answer instead of him.
 
ehild said:
@vishnu: I asked the OP, as I wanted him to answer his own question. Do not answer instead of him.
Ooops
 
ehild said:
The pulley is treated as a rigid body. What is the angular momentum for a ring? How is the angular velocity of the pulley related to the linear velocity of its rim?

The angular momentum for a ring is MR2.

Since a ring is a rigid body, it's angular momentum is I = lw = (MR2)(w) = (MR2)(v/r) = mvr

Ok, I see.

So from what I can understand from the posts above, you can use r x p for a particle, or for a sum of particles, but for a rigid body, you must use I = Iw.

And, when the velocity used in the calculations must be the tangential velocity.

Is this correct?
 
Speedking96 said:
So from what I can understand from the posts above, you can use r x p for a particle, or for a sum of particles, but for a rigid body, you must use I = Iw.

And, when the velocity used in the calculations must be the tangential velocity.

Is this correct?
Yes, L=Iw. And you get it by summing (integrating) the contribution rxp of all particles of that rigid body, using the fact that the angular frequency is the same for all of them.
 
  • Like
Likes   Reactions: Speedking96
  • #10
Thank you.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
335
Views
16K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 62 ·
3
Replies
62
Views
13K
  • · Replies 54 ·
2
Replies
54
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K