Anh Nguyen's questions regarding indefinite integrals (integration by parts)

Click For Summary
SUMMARY

The discussion focuses on solving three specific indefinite integrals using integration by parts and trigonometric identities. The integrals addressed are: 1) \(\int -6e^{2t}\sin(t)\cos(t)\,dt\), 2) \(\int 5e^{2t}\sin^2(t)\,dt\), and 3) \(\int -e^{2t}\cos^2(t)\,dt\). The solutions utilize the derived formulas for \(\int e^{x}\sin(x)\,dx\) and \(\int e^{x}\cos(x)\,dx\) to simplify the calculations, leading to definitive results for each integral.

PREREQUISITES
  • Understanding of integration by parts
  • Familiarity with trigonometric identities, specifically sine and cosine
  • Knowledge of exponential functions and their integrals
  • Ability to perform variable substitution in integrals
NEXT STEPS
  • Study the derivation and application of integration by parts in various contexts
  • Learn about trigonometric identities and their use in simplifying integrals
  • Explore advanced techniques in integration, such as substitution and partial fractions
  • Practice solving integrals involving products of exponential and trigonometric functions
USEFUL FOR

Students of calculus, mathematics educators, and anyone looking to enhance their skills in solving complex integrals involving exponential and trigonometric functions.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

I need help to solve following integrals problems?


How to solve these problems:

1) integral of -6e^2tsintcost dt

2) integral of 5e^2tsin^2t dt

3) integral of -e^2tcos^2t dt

I have posted a link there to this thread so the OP can see my work.
 
Physics news on Phys.org
Hello Anh Nguyen,

Before we work the given problems, let's develop two formulas we can use.

First, let's consider:

$$I=\int e^{x}\sin(x)\,dx$$

Let's use integration by parts, where:

$$u=\sin(x)\,\therefore\,du=\cos(x)\,dx$$

$$dv=e^{x}\,dx\,\therefore\,v=e^x$$

Hence:

$$I=\sin(x)e^{x}-\int e^{x}\cos(x)\,dx$$

Let's use integration by parts again, where:

$$u=\cos(x)\,\therefore\,du=-\sin(x)\,dx$$

$$dv=e^{x}\,dx\,\therefore\,v=e^x$$

Hence:

$$I=\sin(x)e^{x}-\left(\cos(x)e^{x}+\int e^{x}\sin(x)\,dx \right)$$

$$I=e^{x}\left(\sin(x)-\cos(x) \right)-I$$

Add $I$ to both sides:

$$2I=e^{x}\left(\sin(x)-\cos(x) \right)$$

Divide through by $2$ and append the constant of integration:

$$I=\frac{e^{x}}{2}\left(\sin(x)-\cos(x) \right)+C$$

Thus, we have:

(1) $$\int e^{x}\sin(x)\,dx=\frac{e^{x}}{2}\left(\sin(x)-\cos(x) \right)+C$$

Next, let's consider:

$$I=\int e^{x}\cos(x)\,dx$$

Above, we found:

$$I=\cos(x)e^{x}+\int e^{x}\sin(x)\,dx$$

Using (1), we may state:

$$I=\cos(x)e^{x}+\frac{e^{x}}{2}\left(\sin(x)-\cos(x) \right)+C$$

$$I=\frac{e^{x}}{2}\left(\sin(x)+\cos(x) \right)+C$$

Hence, we may state:

(2) $$\int e^{x}\cos(x)\,dx=\frac{e^{x}}{2}\left(\sin(x)+\cos(x) \right)+C$$

Now, armed with these two formulas, let's work the given problems.

1.) We are given to evaluate:

$$I=\int -6e^{2t}\sin(t)\cos(t)\,dt$$

Using the double-angle identity for sine, we may write:

$$I=-3\int e^{2t}\sin(2t)\,dt$$

Using the substitution $$w=2t\,\therefore\,dw-2\,dt$$ we have:

$$I=-\frac{3}{2}\int e^{w}\sin(w)\,dw$$

Using (1), we obtain:

$$I=-\frac{3}{2}\left(\frac{e^{w}}{2}\left(\sin(w)-\cos(w) \right) \right)+C$$

$$I=\frac{3}{4}e^{w}\left(\cos(w)-\sin(w) \right)+C$$

Back-substituting for $w$ and $I$, we have:

$$\int -6e^{2t}\sin(t)\cos(t)\,dt=\frac{3}{4}e^{2t}\left(\cos(2t)-\sin(2t) \right)+C$$

2.) We are given to evaluate:

$$I=\int 5e^{2t}\sin^2(t)\,dt$$

Using a power-reduction identity for sine, we may write:

$$I=\frac{5}{2}\int e^{2t}\left(1-\cos(2t) \right)\,dt$$

Using the substitution $$w=2t\,\therefore\,dw-2\,dt$$ we have:

$$I=\frac{5}{4}\int e^{w}\left(1-\cos(w) \right)\,dw$$

$$I=\frac{5}{4}\left(\int e^{w}\,dw-\int e^{w}\cos(w)\,dw \right)$$

Using (2), we may state:

$$I=\frac{5}{4}\left(e^{w}-\frac{e^{w}}{2}\left(\sin(w)+\cos(w) \right) \right)+C$$

$$I=\frac{5}{8}e^{w}\left(2-\sin(w)-\cos(w) \right)+C$$

Back-substituting for $w$ and $I$, we have:

$$\int 5e^{2t}\sin^2(t)\,dt=\frac{5}{8}e^{2t}\left(2-\sin(2t)-\cos(2t) \right)+C$$

3.) We are given to evaluate:

$$I=\int -e^{2t}\cos^2(t)\,dt=\int e^{2t}\left(\sin^2(t)-1 \right)\,dt=\int e^{2t}\sin^2(t)\,dt-\int e^{2t}\,dt$$

Using the result of problem 2.) we may write:

$$I=\frac{1}{8}e^{2t}\left(2-\sin(2t)-\cos(2t) \right)-\frac{1}{2}e^{2t}+C$$

And so we conclude:

$$\int -e^{2t}\cos^2(t)\,dt=-\frac{1}{8}e^{2t}\left(2+\sin(2t)+\cos(2t) \right)+C$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K