MHB Anh Nguyen's questions regarding indefinite integrals (integration by parts)

Click For Summary
The discussion focuses on solving three specific indefinite integrals using integration by parts and trigonometric identities. The first integral, -6e^(2t)sin(t)cos(t), is simplified using a double-angle identity, leading to the result of (3/4)e^(2t)(cos(2t) - sin(2t)) + C. The second integral, 5e^(2t)sin^2(t), employs a power-reduction identity, yielding (5/8)e^(2t)(2 - sin(2t) - cos(2t)) + C. The third integral, -e^(2t)cos^2(t), is expressed in terms of the second integral and results in -(1/8)e^(2t)(2 + sin(2t) + cos(2t)) + C. The thread effectively demonstrates the application of integration techniques to derive these results.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

I need help to solve following integrals problems?


How to solve these problems:

1) integral of -6e^2tsintcost dt

2) integral of 5e^2tsin^2t dt

3) integral of -e^2tcos^2t dt

I have posted a link there to this thread so the OP can see my work.
 
Mathematics news on Phys.org
Hello Anh Nguyen,

Before we work the given problems, let's develop two formulas we can use.

First, let's consider:

$$I=\int e^{x}\sin(x)\,dx$$

Let's use integration by parts, where:

$$u=\sin(x)\,\therefore\,du=\cos(x)\,dx$$

$$dv=e^{x}\,dx\,\therefore\,v=e^x$$

Hence:

$$I=\sin(x)e^{x}-\int e^{x}\cos(x)\,dx$$

Let's use integration by parts again, where:

$$u=\cos(x)\,\therefore\,du=-\sin(x)\,dx$$

$$dv=e^{x}\,dx\,\therefore\,v=e^x$$

Hence:

$$I=\sin(x)e^{x}-\left(\cos(x)e^{x}+\int e^{x}\sin(x)\,dx \right)$$

$$I=e^{x}\left(\sin(x)-\cos(x) \right)-I$$

Add $I$ to both sides:

$$2I=e^{x}\left(\sin(x)-\cos(x) \right)$$

Divide through by $2$ and append the constant of integration:

$$I=\frac{e^{x}}{2}\left(\sin(x)-\cos(x) \right)+C$$

Thus, we have:

(1) $$\int e^{x}\sin(x)\,dx=\frac{e^{x}}{2}\left(\sin(x)-\cos(x) \right)+C$$

Next, let's consider:

$$I=\int e^{x}\cos(x)\,dx$$

Above, we found:

$$I=\cos(x)e^{x}+\int e^{x}\sin(x)\,dx$$

Using (1), we may state:

$$I=\cos(x)e^{x}+\frac{e^{x}}{2}\left(\sin(x)-\cos(x) \right)+C$$

$$I=\frac{e^{x}}{2}\left(\sin(x)+\cos(x) \right)+C$$

Hence, we may state:

(2) $$\int e^{x}\cos(x)\,dx=\frac{e^{x}}{2}\left(\sin(x)+\cos(x) \right)+C$$

Now, armed with these two formulas, let's work the given problems.

1.) We are given to evaluate:

$$I=\int -6e^{2t}\sin(t)\cos(t)\,dt$$

Using the double-angle identity for sine, we may write:

$$I=-3\int e^{2t}\sin(2t)\,dt$$

Using the substitution $$w=2t\,\therefore\,dw-2\,dt$$ we have:

$$I=-\frac{3}{2}\int e^{w}\sin(w)\,dw$$

Using (1), we obtain:

$$I=-\frac{3}{2}\left(\frac{e^{w}}{2}\left(\sin(w)-\cos(w) \right) \right)+C$$

$$I=\frac{3}{4}e^{w}\left(\cos(w)-\sin(w) \right)+C$$

Back-substituting for $w$ and $I$, we have:

$$\int -6e^{2t}\sin(t)\cos(t)\,dt=\frac{3}{4}e^{2t}\left(\cos(2t)-\sin(2t) \right)+C$$

2.) We are given to evaluate:

$$I=\int 5e^{2t}\sin^2(t)\,dt$$

Using a power-reduction identity for sine, we may write:

$$I=\frac{5}{2}\int e^{2t}\left(1-\cos(2t) \right)\,dt$$

Using the substitution $$w=2t\,\therefore\,dw-2\,dt$$ we have:

$$I=\frac{5}{4}\int e^{w}\left(1-\cos(w) \right)\,dw$$

$$I=\frac{5}{4}\left(\int e^{w}\,dw-\int e^{w}\cos(w)\,dw \right)$$

Using (2), we may state:

$$I=\frac{5}{4}\left(e^{w}-\frac{e^{w}}{2}\left(\sin(w)+\cos(w) \right) \right)+C$$

$$I=\frac{5}{8}e^{w}\left(2-\sin(w)-\cos(w) \right)+C$$

Back-substituting for $w$ and $I$, we have:

$$\int 5e^{2t}\sin^2(t)\,dt=\frac{5}{8}e^{2t}\left(2-\sin(2t)-\cos(2t) \right)+C$$

3.) We are given to evaluate:

$$I=\int -e^{2t}\cos^2(t)\,dt=\int e^{2t}\left(\sin^2(t)-1 \right)\,dt=\int e^{2t}\sin^2(t)\,dt-\int e^{2t}\,dt$$

Using the result of problem 2.) we may write:

$$I=\frac{1}{8}e^{2t}\left(2-\sin(2t)-\cos(2t) \right)-\frac{1}{2}e^{2t}+C$$

And so we conclude:

$$\int -e^{2t}\cos^2(t)\,dt=-\frac{1}{8}e^{2t}\left(2+\sin(2t)+\cos(2t) \right)+C$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
Replies
1
Views
1K
Replies
1
Views
1K