Firepanda
- 425
- 0
Show that if x, y ∈ Z and 3|x2+z2 then 3|x and 3|z
Solution:
3|(x-z)(x+z)
=> 3|x+z or 3|x-z
if 3|x+z
then 3|(x+z)2 = x2+z2 +2xz
=> 3|x2+z2 +2xz - (x2+z2)
=> 3|2xz
=> 3|xz
so 3|x or 3|z
where to go from here?
just the argument that if 3|x then 3|x2
and therefore 3 must divide z2 => 3|z?
Thanks
Solution:
3|(x-z)(x+z)
=> 3|x+z or 3|x-z
if 3|x+z
then 3|(x+z)2 = x2+z2 +2xz
=> 3|x2+z2 +2xz - (x2+z2)
=> 3|2xz
=> 3|xz
so 3|x or 3|z
where to go from here?
just the argument that if 3|x then 3|x2
and therefore 3 must divide z2 => 3|z?
Thanks
Last edited: