- #1
Rectifier
Gold Member
- 313
- 4
I am trying to find primitives to the rational function below but my answer differs from the answer in the book only slightly and now, I am asking for your help to find the error in my solution. This solution is long since I try to include all the steps in the process.
The problem
$$ \int \frac{x^2+8x+4}{x^2+4x+8} dx $$
Relevant equations
$$ \int \frac{1}{x} dx = \ln |x| + C \\
\int \frac{1}{x^2+1} dx =arctan x + C
$$
The attempt at a solution
I am starting with a polynomial division and rewrite the fraction as
## \int \frac{x^2+8x+4}{x^2+4x+8} dx = \int 1 + \frac{4x-4}{x^2+4x+8} dx ##
Since divisor is irreducible, I must complete the square and adapt the quotient to use the standard formula for a function that has a primitive which is ##arctan x +C## as follows.
$$ \int 1 + \frac{4x-4}{x^2+4x+8} dx = x + \int \frac{4x-4}{(x+2)^2+4} dx \\ x + \int \frac{4(x-1)}{\frac{4}{4}(x+2)^2+4} dx \\ x + \int \frac{4(x-1)}{4 \left( \frac{(x+2)^2}{4}+1 \right)} dx \\ x + \int \frac{4(x-1)}{4 \left( \left( \frac{x+2}{2} \right)^2+1 \right)} dx \\ x + \int \frac{x-1}{ \left( \frac{x+2}{2} \right)^2+1} dx $$
I split the qotent:
$$ x + \int \frac{x}{ \left( \frac{x+2}{2} \right)^2+1} dx - \int \frac{1}{ \left(\frac{x+2}{2} \right)^2+1} dx $$
Lets focus on the part that has ##x## as divisor.
$$ \int \frac{x}{ \left( \frac{x+2}{2} \right)^2+1} dx $$
I perform a variable substitutution ## [t= \frac{x+2}{2} \Leftrightarrow x = 2t-2, \frac{dt}{dx} = \frac{1}{2} \Leftrightarrow 2 dt = dx] ##. That results in
$$\int \frac{x}{ \left( \frac{x+2}{2} \right)^2+1} dx = 2 \left( \int \frac{2t-2}{ t^2+1} dt \right) = 2 \int \frac{2t}{ t^2+1} dt - 2 \cdot 2 \int \frac{1}{ t^2+1} dt$$
I split the quotient once more and focus on the part that has ##2t## as divisor where I make one more variable substitution ##[g=t^2+1, \frac{dg}{dt}=2t \Leftrightarrow 2t dt = dg]##
$$ 2 \int \frac{2t}{ t^2+1} dt = 2 \int \frac{1}{g} dg = 2 \ln|g| + C = 2 \ln|t^2+1| + C = \ln| \left(\frac{x+2}{2} \right)^2 + 1|+ C$$
I use back-substitution in the last steps.Now, let's add the rest of the integrals that we didn't focus on before:
$$ x + \int \frac{x}{ \left( \frac{x+2}{2} \right)^2+1} dx - \int \frac{1}{ \left(\frac{x+2}{2} \right)^2+1} dx \\ x + \ \ 2 \int \frac{2t}{ t^2+1} dt - 2 \cdot 2 \int \frac{1}{ t^2+1} dt - \int \frac{1}{ \left(\frac{x+2}{2} \right)^2+1}\\ x + \ \ 2\ln| \left(\frac{x+2}{2} \right)^2 + 1| - 4 \arctan t - 2 \arctan(\left(\frac{x+2}{2} \right)) + C \\ x + \ \ 2\ln| \left(\frac{x+2}{2} \right)^2 + 1| - 6 \arctan(\left(\frac{x+2}{2} \right)) + C$$
I am not interested in alternative ways to solve the problem but to find the error in my calculations.
Please help.
The part that differs from the answer in my book is inside ## \ln ## and not by much (see spoiler)
The problem
$$ \int \frac{x^2+8x+4}{x^2+4x+8} dx $$
Relevant equations
$$ \int \frac{1}{x} dx = \ln |x| + C \\
\int \frac{1}{x^2+1} dx =arctan x + C
$$
The attempt at a solution
I am starting with a polynomial division and rewrite the fraction as
## \int \frac{x^2+8x+4}{x^2+4x+8} dx = \int 1 + \frac{4x-4}{x^2+4x+8} dx ##
Since divisor is irreducible, I must complete the square and adapt the quotient to use the standard formula for a function that has a primitive which is ##arctan x +C## as follows.
$$ \int 1 + \frac{4x-4}{x^2+4x+8} dx = x + \int \frac{4x-4}{(x+2)^2+4} dx \\ x + \int \frac{4(x-1)}{\frac{4}{4}(x+2)^2+4} dx \\ x + \int \frac{4(x-1)}{4 \left( \frac{(x+2)^2}{4}+1 \right)} dx \\ x + \int \frac{4(x-1)}{4 \left( \left( \frac{x+2}{2} \right)^2+1 \right)} dx \\ x + \int \frac{x-1}{ \left( \frac{x+2}{2} \right)^2+1} dx $$
I split the qotent:
$$ x + \int \frac{x}{ \left( \frac{x+2}{2} \right)^2+1} dx - \int \frac{1}{ \left(\frac{x+2}{2} \right)^2+1} dx $$
Lets focus on the part that has ##x## as divisor.
$$ \int \frac{x}{ \left( \frac{x+2}{2} \right)^2+1} dx $$
I perform a variable substitutution ## [t= \frac{x+2}{2} \Leftrightarrow x = 2t-2, \frac{dt}{dx} = \frac{1}{2} \Leftrightarrow 2 dt = dx] ##. That results in
$$\int \frac{x}{ \left( \frac{x+2}{2} \right)^2+1} dx = 2 \left( \int \frac{2t-2}{ t^2+1} dt \right) = 2 \int \frac{2t}{ t^2+1} dt - 2 \cdot 2 \int \frac{1}{ t^2+1} dt$$
I split the quotient once more and focus on the part that has ##2t## as divisor where I make one more variable substitution ##[g=t^2+1, \frac{dg}{dt}=2t \Leftrightarrow 2t dt = dg]##
$$ 2 \int \frac{2t}{ t^2+1} dt = 2 \int \frac{1}{g} dg = 2 \ln|g| + C = 2 \ln|t^2+1| + C = \ln| \left(\frac{x+2}{2} \right)^2 + 1|+ C$$
I use back-substitution in the last steps.Now, let's add the rest of the integrals that we didn't focus on before:
$$ x + \int \frac{x}{ \left( \frac{x+2}{2} \right)^2+1} dx - \int \frac{1}{ \left(\frac{x+2}{2} \right)^2+1} dx \\ x + \ \ 2 \int \frac{2t}{ t^2+1} dt - 2 \cdot 2 \int \frac{1}{ t^2+1} dt - \int \frac{1}{ \left(\frac{x+2}{2} \right)^2+1}\\ x + \ \ 2\ln| \left(\frac{x+2}{2} \right)^2 + 1| - 4 \arctan t - 2 \arctan(\left(\frac{x+2}{2} \right)) + C \\ x + \ \ 2\ln| \left(\frac{x+2}{2} \right)^2 + 1| - 6 \arctan(\left(\frac{x+2}{2} \right)) + C$$
I am not interested in alternative ways to solve the problem but to find the error in my calculations.
Please help.
The part that differs from the answer in my book is inside ## \ln ## and not by much (see spoiler)
It differs only by a multiple of 4. In my book the contents of ln are: 2 \ln( x^2 + 4x + 8 )
.