Any suggestions for finding the inverse Laplace transform of 11/(s^2+16)^2?

bmed90
Messages
99
Reaction score
0
Hi,

I would like to find the inverse Laplace transform for

11/(s^2+16)^2

I have tried to expand it using the following partial fraction decomp to find the constants and take the inverse Laplace but this did not work

C1(s)+ C2/(s^2+16) + C3(s)+C4/(s^2+16)^2

Does anyone have any suggestions?
 
Physics news on Phys.org
First try to find
$$\mathcal{L}^{-1} \left\{ \frac{1}{(s^2+16)} \right\}$$
Then use the integration rule
$$\mathcal{L}^{-1} \{ \mathrm{F}(s) \} = t \, \mathcal{L}^{-1} \left\{ \int_s^\infty \! \mathrm{F}(u) \, \mathrm{d}u \right\}
\\
\text{or the convolution rule}
\\
\mathcal{L}^{-1} \left\{ G(s)H(s) \right\} = \int_0^t g(t-\tau)h(\tau) \mathop{d\tau}
\\
\text{where}
\\
\mathcal{L}^{-1} \{ \mathrm{G}(s) \} =g(t)
\\
\mathcal{L}^{-1} \{ \mathrm{H}(s) \} =h(t)

$$
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top