MHB AO+BO+CO≥6r where r is the radius of the inscribed circle

solakis1
Messages
407
Reaction score
0
From the entrance examinations to Ghana University ,from high school, i got the following problem:

If O is the center of the inscribed circle in an ABC trigon,then prove that: $$AO+BO+CO\geq 6r$$ where r is the radius of the inscribed circle.
 
Last edited:
Mathematics news on Phys.org
I first thought that your "ABC trigon" is what I would call a "triangle" but that would make the problem impossible. If ABC is a triangle inscribed in a circle, of radius r, then OA, OB, and OC are equal to r so that OA+ OB+ OC= 3r which is less than 6r.
 
HallsofIvy said:
I first thought that your "ABC trigon" is what I would call a "triangle" but that would make the problem impossible. If ABC is a triangle inscribed in a circle, of radius r, then OA, OB, and OC are equal to r so that OA+ OB+ OC= 3r which is less than 6r.

The question is about the circle inscribed in a triangle, not about a triangle inscribed in a circle.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top