Aperture Effects: Explaining Brightness & Dimming

  • Thread starter Thread starter Robert Burdge
  • Start date Start date
  • Tags Tags
    Effects
AI Thread Summary
Viewing a distant object through a small circular aperture close to the eye results in a dimmed center image with a bright perimeter, enhancing depth of field but complicating visibility. The proximity of the aperture causes defocusing, while the size suggests that diffraction is not the primary cause of the observed effects. Using a cross-slot aperture instead eliminates the dimming at the center but reduces depth of field. Discussions reference the Fresnel Zone Plate effect, indicating that the phenomenon may relate to diffraction principles, despite the aperture's distance from the eye. The conversation highlights the complexities of light behavior through apertures and the interplay between defocus and diffraction.
Robert Burdge
Messages
2
Reaction score
0
If a distant object is viewed through a small ciruclar aperture that is placed close to the eye, there is an apparent "shadowing" of the center of the viewed image, while the inner perimeter of the aperture is bright.

The small aperture enhances the depth of field for good focus, but the dimming of the center of the image makes viewing more difficult. The aperture is defocused because of its proximity to the eye, and because the point of focus is intentionally at a distance. If a pair of short slits in the form of a cross (with width equal to the original circular aperture) is used instead of the circular aperture, the center of the aperture image is bright.

The aperture size (~ 1.0mm) is large compared to the wavelength of light which would suggest that diffraction is not the cause of this phenomena. Defocus can account for the general dimming of the image, but not the brightness around the perimeter. The cross-slot aperture appears to solve the problem of dimming at the expense of depth of field. Can anyone explain what causes these effects?
 
Physics news on Phys.org
Sounds very much like a Fresnel Zone Plate effect. Search for that on Google and you'll find all you need!

P.S. A pinhole camera focuses the image by being, essentially, the central circle of a Fresnel zone plate.

P.P.S. It is diffraction. What do you think makes shadows 'blurry' the further they are from the object blocking the light? That's diffraction too!
 
James,

I thought about that, but the effect seems to be fairly indifferent to the distance of the aperture from the eye. If I understand the Fresnel Zone effect it should pass through several different patterns in short order as the observation point is moved relative to the aperture, with the ring pattern and number of rings changing noticeably.

The far-field/near-field boundary for light through a 1.0 mm aperture is about 1.8 m . With the eye about 3 cm from the aperture this would definitely qualify as Fresnel near-field. I have also read, though, that the focusing effect of the eye will tend to produce Fraunhofer diffraction even at close distances. Lenses are used in this way in experiements to produce far-field effects at finite distances.

Robert
 
Hello! Let's say I have a cavity resonant at 10 GHz with a Q factor of 1000. Given the Lorentzian shape of the cavity, I can also drive the cavity at, say 100 MHz. Of course the response will be very very weak, but non-zero given that the Loretzian shape never really reaches zero. I am trying to understand how are the magnetic and electric field distributions of the field at 100 MHz relative to the ones at 10 GHz? In particular, if inside the cavity I have some structure, such as 2 plates...
Back
Top