Applying the Product Rule to a Non-Differentiable Function

AI Thread Summary
The discussion centers on whether the product rule can be applied to a function that is not differentiable at a point, specifically examining the function f(x) = g(x)sin(1/x) for x ≠ 0 and f(0) = 0. Participants highlight that the product rule requires both functions to be differentiable, which complicates the analysis when one function is not. The derivative of sin(1/x) is noted to be undefined at zero, necessitating that g(x) must grow faster than x^2 for a potential derivative to exist. One user mentions finding the limit using the epsilon-delta definition but seeks a simpler method. The conversation emphasizes the challenges of differentiating non-differentiable functions and the limitations of the product rule in such cases.
StephenPrivitera
Messages
360
Reaction score
0
Can the product rule be applied if one of the functions is not differentiable? For example,
f(x)={g(x)sin(1/x), x not =0
=0, x=0
where g(0)=g'(0)=0.
f'(0)=g'(0)sin(1/0) + g(0)dsin(1/x)/dx
=0sin1/0+0dsin(1/x)/dx=0?
applying the limit definition, I get
f'(0)=g'(0)lim sin(1/h) where h-->0
is this zero?
 
Physics news on Phys.org
It turns out that in order to find f'(0) I had to go back to the e-d definition of limit. Anyone see an easier way?
 
The limit you're describing does not exist.a

Product rule:
f(x)g(x)=f'(x)g(x)+f(x)g'(x)

You need derivatives of both.

Now we have
g(x)sin(1/x)

the derivative of sin(1/x) is
x-2cos(1/x)
and not defined at zero (no limit at zero either)
you'd need g(x) to grow at better than x2 to have a potential derivative there.
 
Originally posted by NateTG
The limit you're describing does not exist.a
Hi NateTG, I have found the limit. See attached.
I had to go back to epsilons and deltas. I was wondering if anyone knows an easier way to find the derivative.
 

Attachments

I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top